Általános tudnivalók

Első vizsgadolgozat (2012. jan. 3.)

I. rész, megoldás
II. rész, megoldás
III. rész

Második vizsgadolgozat (2012. jan. 10.)

I. rész, megoldás
II. rész, megoldás
III. rész

Harmadik vizsgadolgozat (2012. jan. 24.)

I. rész, megoldás
II. rész, megoldás
III. rész

Negyedik vizsgadolgozat (2012. jan. 31.)

I. rész, megoldás
II. rész, megoldás
III. rész

Az előadások tartalma

A vizsga menetéről és a követelményekről a fenti linken olvasható részletes információ, beleértve egy minta vizsgadolgozatot is. Ennek a félévnek az anyagát lényegében lefedi az alábbi két tankönyvből összesen az első három-három fejezet: A félév anyaga az, ami az egyes előadások alábbi összefoglalójának végén látható, letölthető anyagban szerepel, beleértve a tankönyvi hivatkozásokat is. Azoknak a bizonyításoknak a listája, amik a vizsga harmadik részében szerepelhetnek, az utolsó, 21-22. előadást tartalmazó prezentáció legvégén található. Az alábbi tematikában, ami tehát egyben vizsgatematika is, a fenti könyvek megfelelő szakaszaira F, illetve K betű hivatkozik.

Külön is felhívjuk a figyelmet arra, hogy a polinomokat eleinte csak valós, majd komplex fölött tekintjük, és a félév vége felé vezetjük be az általános gyűrű fölötti polinom fogalmát. Ekkor az összes tételt ilyen általánosságban átismételjük (és a vizsgán így is kérjük számon). Mindkét tankönyvben a felépítés eleve gyűrű (illetve test) fölött történik.

1-2. előadás: szeptember 13. A valós együtthatós polinom, mint formális kifejezés. Polinomok egyenlősége, együtthatói, konstans tagja, foka, főegyütthatója, normált polinom, a nullapolinom. Polinomok összege, különbsége, szorzata, a szorzat együtthatói. Az összeg és a szorzat foka, nullosztómentesség. K2.1,2.3. A szumma és produktum jelölés. Behelyettesítés polinomba, polinomfüggvény. Gyök, a gyöktényező kiemelhetősége. K2.4.

Prezentáció
Nyomtatható

3-4. előadás: szeptember 20. A Horner elrendezés, és szerepe a gyöktényező kiemelésénél. A különböző gyökökhöz tartozó gyöktényezők egyszerre is kiemelhetők. A gyökök száma legfeljebb a polinom foka, a polinomok azonossági tétele. A gyöktényezős alak. A gyöktényezős alakban a gyökök száma a polinom foka, a szereplő konstans a főegyüttható, és a polinom minden gyöke szerepel a felsoroltak között. A k-szoros gyök fogalma. Egész együtthatós polinom racionális gyökeinek meghatározása: a racionális gyökteszt. K2.4,2.5,3.3. A binomiális tétel.

Prezentáció
Nyomtatható

5-6. előadás: szeptember 27. A komplex szám mint a+bi alakú formális kifejezés, ahol a és b valós számok. Valós és képzetes rész, egyértelműség. Összeadás, kivonás, szorzás. Minden nem nulla komplex számmal lehet osztani. Konjugált, abszolút érték, kapcsolatuk, tulajdonságaik. Nullosztómentesség. K1.3.

A komplex számok ábrázolása a síkon pontokkal illetve vektorokkal. A komplex számok összeadása a vektorösszeadásnak felel meg. Komplex szám hossza, szöge és trigonometrikus alakja. Szorzásnál a szögek összeadódnak, a hosszak összeszorzódnak. Komplex számok hatványozása.K1.4.

Prezentáció
Nyomtatható

7-8. előadás: október 4. Gyökvonás komplex számból. A gyökök száma és elhelyezkedése. Az egységgyökök fogalma, száma, képlete.K1.5. Az algebra alaptétele.

A háromszög-egyenlőtlenség. Két pont távolsága. Az eltolás és a forgatva nyújtás kifejezése komplex számok segítségével, geometriai alkalmazások.K1.4.

Lineáris egyenletrendszer megoldása Gauss-eliminációval. Ha egyértelmű a megoldás, akkor az egyenletek száma legalább annyi, mint az ismeretlenek száma. Következmény: homogén egyenletrendszernek van nemtriviális megoldása, ha kevesebb egyenlet van, mint ismeretlen.F3.1.

Prezentáció
Nyomtatható

9-10. előadás: október 11. Az n magas oszlopvektorok "tere", összeadás, skalárral szorzás. A mátrix általános fogalma, műveletek: összeadás, nulla, ellentett, skalárral szorzás, transzponált, szorzás, egységmátrix, inverz, műveleti tulajdonságok. Mátrix és vektor szorzata.F2.1. Lineáris egyenletrendszer mátrixos alakja.

Oszlopvektorok lineáris függetlensége, összefüggősége, ennek eldöntése lineáris egyenletrendszer megoldásával. Vektorrendszer rangja. Mátrix sor- és oszloprangja, ezek egyenlősége. A rang és az inverz kiszámítása Gauss-elimináció segítségével. Szorzat rangja.F3.2-3.5.

Prezentáció
Nyomtatható

Első évfolyamzárthelyi az 1-8. előadások anyagából: október 21, péntek, 16:00. Ennek fejében elmarad az október 18-i előadás.

Az első zárthelyi terembeosztása:

Ágoston István csoportjai: Déli tömb, 0-823, Kitaibel Pál terem.
Kiss Emil csoportjai: Déli tömb, 0-822, Mogyoródi József terem.
Zábrádi Gergely csoportja: Déli tömb, 0-805, Fejér Lipót terem.

11-12. előadás: október 25. A 2x2-es és 3x3-as determináns definíciója. Tulajdonságai (minden oszlopban lineáris, és ha két oszlop egyenlő, akkor a determináns nulla). Következmény: egy oszlophoz egy másik oszlop skalárszorosát adva a determináns értéke nem változik; a determináns oszlopcserénél előjelet vált. A transzponált mátrix determinánsa. Következmény: az oszlopokra teljesülő tulajdonságok a sorokra is érvényesek. Felső háromszögmátrix determinánsa. A determináns kiszámítása Gauss-eliminációval. F1.2,1.3.

Előjeles aldetermináns, a kifejtési tétel. A ferde kifejtési tétel, az inverz mátrix képlete. A determinánsok szorzástétele. Egy mátrix akkor és csak akkor invertálható, ha determinánsa nem nulla. Következmény: négyzetes mátrixokra MN=E akkor és csak akkor, ha NM=E. A Cramer-szabály. A determináns eltűnésének jellemzése. Vandermonde-determináns.F1.4,1.5,2.2.

Prezentáció
Nyomtatható

13-14. előadás: november 8. Permutáció, transzpozíció, minden permutáció transzpozíciók szorzata. Inverziók, permutáció előjele. Kompozíció, a permutációk szorzástétele. Csere előjele, a páros permutációk száma.K4.2, F1.1

A determináns definíciója. A determináns néhány alaptulajdonságanak bizonyítása: linearitás, ha két oszlop egyenlő, akkor a determináns nulla, felső háromszögmátrix és transzponált determinánsa.F1.1,1.2,1.3.

Prezentáció
Nyomtatható

15-16. előadás: november 15. Interpoláció. A gyökök és együtthatók közötti összefüggések.K2.4,K2.5 A többhatározatlanú polinom rekurzív definíciója. Nullosztómentesség, fok, homogén polinomok. Az elemi szimmetrikus polinomok.K2.6

A Cardano-képlet (a képletet a vizsgára nem kell megtanulni), használata, többszörös gyökök létezése. Valós együttható esetén összefüggés a diszkrimináns előjele és a valós gyökök száma között, casus irreducibilis. A negyedfokú egyenletre van, a legalább ötödfokúra nincs gyökképlet. K1.2,K3.8.

Prezentáció
Nyomtatható

17-18. előadás: november 22. Maradékos osztás polinomok között: létezés és egyértelműség. Az eljárás során csak a négy alapműveletet kell alkalmazni, és csak az osztó főegyütthatójával kell osztani.K3.2.

Oszthatóság C, R, Q, Z fölött. Ha f és g egész együtthatós polinomok, akkor f|g ugyanazt jelenti Q és C fölött, de Z fölött nem. Csak a nem nulla konstans polinomoknak van reciproka. Egységek. A kitüntetett közös osztó definíciója és meghatározása euklideszi algoritmussal. K3.1.

Az irreducibilis polinom fogalma C, R, Q fölött. A számelmélet alaptétele. Az alaptétel érvényes, ha elvégezhető a maradékos osztás (tehát például C, R, Q fölött), a bizonyítás ugyanaz, mint az egész számok között. Összefüggés gyök létezése és az irreducibilitás között első, másod-, harmad- és magasabb fokú polinomok esetében.

Az irreducibilis polinomok C fölött pontosan az elsőfokúak. Egy valós együtthatós polinomnak minden komplex szám és a konjugáltja ugyanannyiszoros gyöke. Következmény: páratlan fokú valós együtthatós polinomnak van valós gyöke. Valós fölött egy polinom akkor és csak akkor irreducibilis, ha elsőfokú, vagy ha másodfokú, de nincs valós gyöke. A Schönemann-Eisenstein kritérium. Következmény: racionális fölött akárhányad fokú irreducibilis polinom létezik. Az egész együtthatós polinomok számelmélete (csak vázlatosan). Primitív polinom, a Z[x] irreducibiliseinek leírása. Az alaptétel érvényes.K3.3-3.5.

Prezentáció
Nyomtatható

19-20. előadás: november 29. Nem nulla komplex szám rendje, mint a különböző hatványainak a száma. Képlet a hatvány rendjére, a rend leolvasása a trigonometrikus alakból. A primitív egységgyök fogalma és felismerése a trigonometrikus alakból. Egy szám akkor és csak akkor primitív n-edik egységgyök, ha hatványai épp az összes n-edik egységgyökök. A körosztási polinom definíciója és rekurzív kiszámítása, a körosztási polinom egész együtthatós és irreducibilis. K1.5,3.7.

Asszociativitás, kommutativitás, nullelem, egységelem, ellentett, inverz. Egy műveletnek csak egy nulleleme lehet. Az inverz egyértelmű. Gyűrű, test, példák. K2.2.

Nullosztómentesség, minden test nullosztómentes. A Zn gyűrű definíciója, ez pontosan akkor nullosztómentes ha test, és ez akkor igaz, ha n prímszám. K1.1,2.2,3.3.

Prezentáció
Nyomtatható

21-22. előadás: december 6. Hatványozás, azonosságok, gyűrűelem egész számszorosa. Zp[x]-ben tagonként lehet p-edik hatványra emelni, ha p prím. Következmény: a kis Fermat-tétel.

Egységelemes, kommutatív gyűrű fölötti polinomgyűrű, fokszám, a nullosztómentesség kérdése. A polinomgyűrű egységei. A gyöktényező kiemelhető, de a különböző gyökökhöz tartozó gyöktényezőket egyszerre általában csak nullosztómentes gyűrű fölött lehet kiemelni. Következmény: nullosztómentes gyűrű fölött érvényes, hogy nem lehet a fokszámnál több gyök. Végtelen, nullosztómentes gyűrű fölött igaz a polinomok azonossági tétele, de véges gyűrű fölött nem.K2.4.

A számelmélet alapjai általános gyűrűben. Nullosztómentes gyűrű fölött lehet maradékosan osztani minden olyan polinommal, aminek a főegyütthatója invertálható; egyértelműség. Ha elvégezhető a maradékos osztás, akkor van kitüntetett közös osztó, minden irreducibilis elem prím, ezért a gyűrű alaptételes. Test fölötti polinomgyűrű alaptételes. Az irreducibilitás és a gyökök létezésének összefüggése tetszőleges test fölött első-, másod-, harmad-, és magasabb fokú polinomok esetén.K3.1,3.3.

Alaptételes gyűrű fölötti polinomgyűrű is az. Következmény: Z[x1,...,xn] és T[x1,...,xn] alaptételes, ahol T test. K2.6,3.4.

Prezentáció
Nyomtatható

Második évfolyamzárthelyi a 9-22. előadások anyagából: december 9, péntek, 16:00. Ennek fejében elmarad a december 13-i előadás.

A második zárthelyi terembeosztása:

Ágoston István csoportjai: Déli tömb, 0-823, Kitaibel Pál terem.
Kiss Emil csoportjai: Déli tömb, 0-822, Mogyoródi József terem.
Zábrádi Gergely csoportja: Déli tömb, 0-805, Fejér Lipót terem.

A 13-i előadáson ugyanazok írnak, mint akik október 18-án az előadáson írták az első zárthelyit.