Growth rates of solvable algebras

Algebras & Clones, July 2014, Prague

Keith. A Kearnes, Emil W. Kiss, Ágnes Szendrei

Growth rate
The growth rate of a finite algebra \(A \) is the function \(d_A(n) = \text{the least size of a generating set for } A^n \).

Examples
\(A \) is a module over a ring. Then \(d_A(n) = \Theta(n) \) (linear).
Reason: The size of a basis in a vector space \(F^n \) is \(n \).

\(A \) is a Boolean algebra. Then \(d_A(n) = \Theta(\log(n)) \) (logarithmic). The same holds if \(A \) is a simple nonabelian group.
Reason: all finitary functions on \(A \) are polynomials.

\(A \) is a unary algebra. Then \(d_A(n) = 2^{\Theta(n)} \) (exponential).
Reason: The free algebras over \(A \) have polynomially bounded size.

Wiegold dichotomy
Theorem (J. Wiegold, 1974)
\(G \) is a finite group. If \(G \) has a nontrivial abelian factor group, then \(d_G \) is linear.
Otherwise (that is, if \(G \) is perfect) \(d_G \) is logarithmic.

Remarks
• If \(B \) is a homomorphic image of \(A \), then \(d_B(n) \leq d_A(n) \). So if \(G \) has an abelian factor, then \(d_G \) is at least linear.
• If \(B \) is an expansion of \(A \), then \(d_B(n) \leq d_A(n) \). The richer the structure, the smaller the growth rate.

Wiegold-dichotomy holds for Maltsev algebras (see later).

Motivating problem
What are the possible growth rates of finite algebras?
Pointed cube terms
Example: Maltsev-term \((x_1x_2^{-1}x_3\) in groups).
\[m \begin{pmatrix} x & y & y \\ y & y & x \end{pmatrix} \approx \begin{pmatrix} x \\ x \end{pmatrix}, \]
witnesses that \(m(x_1, x_2, x_3)\) is a 3-ary, 0-pointed, 2-cube term.

If \(\Sigma\) is a set of identities in a language \(L\), then an \(L\)-term \(F(x_1, \ldots, x_m)\) is a \(p\)-pointed, \(k\)-cube term for the variety axiomatized by \(\Sigma\) if there is a \(k \times m\) matrix \(M\) consisting of variables and \(p\) distinct constant symbols, with every column of \(M\) containing a symbol different from \(x\), such that
\[\Sigma \models F(M) \approx \begin{pmatrix} x \\ \vdots \\ x \end{pmatrix}. \]

Growth restrictions imposed by identities
Theorem (KKSz)
Let \(A\) be an algebra with an \(m\)-ary, \(p \geq 1\)-pointed, \(k\)-cube term, with at least one constant symbol appearing in the cube identities. If \(A^{p+k-1}\) is finitely generated, then all finite powers of \(A\) are finitely generated and \(d_A(n)\) is bounded above by a polynomial of degree at most \(\log_w(m)\), where \(w = 2k/(2k - 1)\).

- There exist finite algebras with pointed cube terms whose growth rate is \(\sim\) to a polynomial of any prescribed degree.
- The growth rate of any algebra with a pointed cube term arises as the growth rate of an algebra without a pointed cube term.
- If a basic \(\Sigma\) does not entail the existence of a pointed cube term, then \(\Sigma\) imposes no restriction on growth rates.

“Basic” identity: at most one operation symbol on both sides.
General Wiegold dichotomy

If A has a 0-pointed cube term, then it generates a congruence modular variety. We say that A is perfect, if $[1_A, 1_A] = 1_A$ (in the sense of the modular commutator). That is, A is perfect iff it has no nontrivial abelian factor algebras.

Theorem (KKSz)
Suppose that an algebra A has a 0-pointed, k-cube term and A^k is finitely generated.

- A perfect $\implies d_A(n) = O(\log(n))$.
- A imperfect $\implies d_A(n) = O(n)$.

Suppose that A is finite.

- A perfect $\implies d_A(n) = \Theta(\log(n))$.
- A imperfect $\implies d_A(n) = \Theta(n)$.

The proof uses a probabilistic argument of independent interest.

Abelianness properties

By R. McKenzie and D. Hobby in tame congruence theory:

If $\alpha, \beta, \delta \in \text{Con}(A)$, then α centralizes β modulo δ, that is, $C(\alpha, \beta; \delta)$ holds iff for all polynomials t of A we have

$(\forall a \equiv_\delta b)(\forall c \equiv_\delta d) \quad t(a, c) \equiv_\delta t(a, d) \implies t(b, c) \equiv_\delta t(b, d)$.

The commutator: $[\alpha, \beta] = \bigwedge \{\delta \in \text{Con}(A) : C(\alpha, \beta; \delta) \text{ holds}\}$.

A is abelian if $[1_A, 1_A] = 0_A$ (that is, $C(1_A, 1_A; 0_A)$ holds).

Homomorphic images of abelian algebras are not always abelian.

A is solvable, if there is a chain of congruences $0_A = \theta_0 < \theta_1 < \ldots < \theta_n = 1_A$ such that each θ_i+1/θ_i is abelian. Can be expressed with the commutator the same way as for groups.

Homomorphic images, direct products and subalgebras of finite solvable algebras are solvable. A finite algebra is solvable iff only the types 1 and 2 of tame congruence theory occur in it.

Nilpotence

Developed by K. Kearnes:

When $\alpha \in \text{Con}(A)$ define $\alpha^1 = [\alpha]_1 = \alpha$ and $\alpha^{k+1} = [\alpha, (\alpha)^k]$, $[\alpha]^{k+1} = [[\alpha]_k, \alpha]$.

If $[\alpha]^{n+1} = 0$, then α is n-step left nilpotent, if $[\alpha]^{n+1} = 0$, then α is n-step right nilpotent.

Right nilpotent congruences are left nilpotent in finite algebras.

Left nilpotence implies the following condition:

$C(1_A, N^2; \delta)$ holds whenever $\delta < \theta$ and N is a $<\delta, \theta$-trace. (\dagger)

(Here N^2 is considered as a binary relation, and centrality is defined naturally).

This condition is still stronger than solvability.
Theorem (K. Kearnes)
Homomorphic images of finite abelian algebras are right nilpotent.

The Hamiltonian property
A is Hamiltonian: every subalgebra is a congruence block. quasi-Hamiltonian: every maximal subalgebra is a congruence-block.

Theorem (E. W. Kiss, M. Valeriote)
A locally finite variety is abelian iff it is Hamiltonian.

Wielandt: A finite group is quasi-Hamiltonian (that is, every maximal subgroup is normal) iff it is nilpotent.

Theorem (K. Kearnes)
If a finite algebra A satisfies (\dagger), then it is quasi-Hamiltonian. A variety generated by a finite left nilpotent algebra is quasi-Hamiltonian. Conversely, if A^2 is quasi-Hamiltonian, then $V(A)$ is quasi-Hamiltonian, and its finite members satisfy (\dagger).

Strongly abelian algebras
An algebra A is strongly abelian, if for all polynomials t we have $(\forall a, b, c, d, e) \ t(a, c) = t(b, d) \Rightarrow t(e, c) = t(e, d)$.

Let A be a nontrivial finite algebra and let B be a nontrivial homomorphic image of A^k for some k.

- If B is strongly abelian, then $d_A(n) = 2^{\Theta(n)}$ (exponential).
- If B is abelian, then $d_A(n) = \Omega(n)$ (at least linear).

This holds, because the free algebras in the first case have polynomially bounded size, and in the second case their size is in $2^{O(n)}$ by a result of J. Berman and R. McKenzie.

Each simple factoralgebra of a finite solvable algebra A is either abelian or strongly abelian, so $d_A(n)$ is at least linear.
The hierarchy of abelianness properties

(1) A is solvable.
(2) A is (left) nilpotent.
(3) A is abelian.
(4) A is a subdirect product of simple abelian algebras.
(5) A generates an abelian variety.

We have (4) \Rightarrow (3) \Rightarrow (2) \Rightarrow (1) and (5) \Rightarrow (3). No other implications hold (except the formal consequences).

We prove that stronger abelianness properties yield a closer relationship between various growth-restricting conditions.

Example: Both (5) and (4) imply that the growth rate is non-exponential if A has a Maltsev term (in which case the growth rate is linear), but (2) does not.

The hierarchy of growth-restricting conditions

(i) A has a Maltsev polynomial.
(ii) A has a pointed cube polynomial.
(iii) A is a spread of its type 2 minimal sets (see later).
(iv) $d_A(n) \in O(n)$.
(v) $d_A(n) \notin 2^{\Omega(n)}$.
(vi) A^n has no nontrivial strongly abelian factor (for all n).

We have (i) \Rightarrow (iv), (i) \Rightarrow (ii) \Rightarrow (v), and (iii) \Rightarrow (iv) \Rightarrow (v) \Rightarrow (vi). No other implications hold for general finite algebras.

Open problem

Is the growth rate of each finite solvable A linear or exponential?

True if A is nilpotent; would follow from (vi) \Rightarrow (iii) for solvable A.

5
Spreads

Definition
Let A be an algebra and U a collection of subsets of A. A subset $S \subseteq A$ is a spread with respect to U if there exists a polynomial p of A and (not necessarily distinct) elements $U_1, \ldots, U_k \in U$ such that $p(U_1, \ldots, U_k) = S$.

Claim
If a finite algebra A is a spread of a family of subsets on which the induced algebras have Maltsev polynomials (like type 2 minimal sets), then the growth rate of A is at most linear.

Theorem (KKSz)
If A is a finite solvable algebra with a Maltsev polynomial, then A is a spread of its type 2 minimal sets.

Solvable algebras

Theorem (KKSz)
Let A be a finite solvable algebra that has a pointed cube term. Then $d_A(n) = \Theta(n)$.

Tool used: a new characterization of solvability.

Let A be an algebra and p an idempotent polynomial of A. The translation-digraph $\text{Tr}(p)$ on A has directed edges $(c, c') = (p(c, c, \ldots, c), p(c, \ldots, c, d, c, \ldots, c))$, where $c, d \in A$.

Theorem (KKSz)
A finite algebra A is solvable if and only if for every neighborhood U of A, and every idempotent polynomial p of the induced algebra $A|_U$, the directed graph $\text{Tr}(p)$ is strongly connected.

Nilpotent algebras

Theorem (KKSz)
A finite left nilpotent algebra has a Maltsev polynomial iff it has a pointed cube polynomial. Hence a finite abelian algebra has a pointed cube polynomial iff it is affine (so has a Maltsev-term).

Theorem (KKSz)
If A is a finite, left nilpotent algebra, and $A^{[A]}$ does not have a nontrivial strongly abelian quotient algebra, then A is a spread of its type 2 minimal sets (hence linear).

The proof uses the quasi-Hamiltonian property for the subalgebras of $A^{[A]}$.
Abelian varieties

Theorem (KKSz)
Let A be an algebra, which is a spread of subsets whose induced algebras are affine. Then the following hold.

- If $H(A^2)$ is abelian, then there is an abelian group operation on A that is compatible with all operations of A, and preserves all congruences of A.
- If the variety $V(A)$ generated by A is abelian, then A is affine.

Examples
An 8-element quasi-affine algebra shows that in the second statement the assumption that $V(A)$ is abelian cannot be dropped.

Another 8-element abelian algebra shows that in the first statement it is not sufficient to assume only that $H(A)$ is abelian.

Semisimple algebras

Theorem (KKSz)
Let A be a finite solvable algebra and β the intersection of all maximal congruences of A. If the growth rate of A/β is linear, then A/β has a Maltsev polynomial. In particular, if A is (linear, and) a direct product of simple abelian algebras, then A is Maltsev.

The proof shows that A/β is a direct product, and not just a subdirect product of simple abelian algebras.

Example
There exist a 16-element algebra that is a direct product of two, 4-element affine (hence abelian, Maltsev) algebras, has a linear growth rate, but does not have a Maltsev polynomial.
Summary: arbitrary

(i) A has a Maltsev polynomial.
(ii) A has a pointed cube polynomial.
(iii) A is a spread of its type 2 minimal sets.
(iv) \(d_A(n) \in O(n)\).
(v) \(d_A(n) \notin 2\Omega(n)\).
(vi) A\(^n\) has no nontrivial strongly abelian factor (for all \(n\)).

All are equivalent if A is semisimple or if \(V(A)\) is abelian.

(i) \(\implies\) (ii)

\[\Downarrow \quad \Downarrow\]

(iii) \(\implies\) (iv) \(\implies\) (v) \(\implies\) (vi).

For arbitrary finite algebras

Summary: solvable

(i) A has a Maltsev polynomial.
(ii) A has a pointed cube polynomial.
(iii) A is a spread of its type 2 minimal sets.
(iv) \(d_A(n) \in O(n)\).
(v) \(d_A(n) \notin 2\Omega(n)\).
(vi) A\(^n\) has no nontrivial strongly abelian factor (for all \(n\)).

All are equivalent if A is semisimple or if \(V(A)\) is abelian.

(i) \(\implies\) (ii)

\[\nparallel \quad \nparallel\]

(iii) \(\implies\) (iv) \(\implies\) (v) \(\implies\) (vi).

For finite, solvable algebras
Summary: nilpotent

(i) A has a Maltsev polynomial.
(ii) A has a pointed cube polynomial.
(iii) A is a spread of its type 2 minimal sets.
(iv) $d_A(n) \in O(n)$.
(v) $d_A(n) \notin 2\Omega(n)$.
(vi) A^n has no nontrivial strongly abelian factor (for all n).

All are equivalent if A is semisimple or if $V(A)$ is abelian.

(i) \iff (ii)

(iii) \iff (iv) \iff (v) \iff (vi).

For finite, left nilpotent algebras

Open problems

Is there a finite algebra A such that $d_A(n) \notin \Omega(n)$ and $d_A(n) \notin O(\log(n))$? That is, whose growth rate is between logarithmic and linear? Open for 2-element partial algebras, too.

Is it true that a finite algebra with a 2-sided unit for some binary term has logarithmic or linear growth? (Note that the identities $x \ast 1 = 1 \ast x = x$ show that \ast is a 1-pointed 2-cube term.)

Does (ii)\implies(iii) hold for finite solvable algebras?

Which of the true implications (iii)\implies(iv)\implies(v)\implies(vi) can be reversed for finite solvable algebras? In particular, is the growth rate of a finite solvable algebra always linear or exponential?
Literature

- KKSz: *Growth rates of algebras I: pointed cube terms*. Arxiv: 1311.2352

- KKSz: *Growth rates of algebras II: Wiegold dichotomy*. Arxiv: 1311.6189

- KKSz: *Growth rates of algebras III: Solvable algebras*. Arxiv: 1311.2359