Growth rates of solvable algebras

Algebras & Clones, July 2014, Prague

Keith. A Kearnes, Emil W. Kiss, Ágnes Szendrei

kearnes@euclid.colorado.edu
ewkiss@cs.elte.hu
szendrei@euclid.colorado.edu

University of Colorado Boulder, USA
Eötvös University, Budapest, Hungary
University of Colorado Boulder, USA
Growth rate

The growth rate of a finite algebra A is the function $d_A(n) =$ the least size of a generating set for A^n.
Growth rate

The growth rate of a finite algebra A is the function $d_A(n) =$ the least size of a generating set for A^n.

Examples

A is a module over a ring. Then $d_A(n) = \Theta(n)$ (linear).
Growth rate

The growth rate of a finite algebra A is the function $d_A(n) = \text{the least size of a generating set for } A^n$.

Examples

A is a module over a ring. Then $d_A(n) = \Theta(n)$ (linear).

Reason: The size of a basis in a vector space F^n is n.
Growth rate

The growth rate of a finite algebra \mathbf{A} is the function $d_{\mathbf{A}}(n) = \text{the least size of a generating set for } \mathbf{A}^n$.

Examples

- \mathbf{A} is a module over a ring. Then $d_{\mathbf{A}}(n) = \Theta(n)$ (linear).
 - **Reason**: The size of a basis in a vector space \mathbb{F}^n is n.

- \mathbf{A} is a Boolean algebra. Then $d_{\mathbf{A}}(n) = \Theta(\log(n))$ (logarithmic).
Growth rate

The growth rate of a finite algebra A is the function $d_A(n) = \text{the least size of a generating set for } A^n$.

Examples

A is a module over a ring. Then $d_A(n) = \Theta(n)$ (linear).

Reason: The size of a basis in a vector space F^n is n.

A is a Boolean algebra. Then $d_A(n) = \Theta(\log(n))$ (logarithmic). The same holds if A is a simple nonabelian group.
Growth rate

The growth rate of a finite algebra A is the function $d_A(n) = \text{the least size of a generating set for } A^n$.

Examples

A is a module over a ring. Then $d_A(n) = \Theta(n)$ (linear).
Reason: The size of a basis in a vector space F^n is n.

A is a Boolean algebra. Then $d_A(n) = \Theta(\log(n))$ (logarithmic).
The same holds if A is a simple nonabelian group.
Reason: all finitary functions on A are polynomials.
Growth rate

The growth rate of a finite algebra A is the function $d_A(n) =$ the least size of a generating set for A^n.

Examples

A is a module over a ring. Then $d_A(n) = \Theta(n)$ (linear).

Reason: The size of a basis in a vector space F^n is n.

A is a Boolean algebra. Then $d_A(n) = \Theta(\log(n))$ (logarithmic).

The same holds if A is a simple nonabelian group.

Reason: all finitary functions on A are polynomials.

A is a unary algebra. Then $d_A(n) = 2^{\Theta(n)}$ (exponential).
Growth rate

The growth rate of a finite algebra A is the function $d_A(n) = \text{the least size of a generating set for } A^n$.

Examples

- A is a module over a ring. Then $d_A(n) = \Theta(n)$ (linear).
 Reason: The size of a basis in a vector space F^n is n.

- A is a Boolean algebra. Then $d_A(n) = \Theta(\log(n))$ (logarithmic).
 The same holds if A is a simple nonabelian group.
 Reason: all finitary functions on A are polynomials.

- A is a unary algebra. Then $d_A(n) = 2^{\Theta(n)}$ (exponential).
 Reason: The free algebras over A have polynomially bounded size.
Theorem (J. Wiegold, 1974)

G is a finite group. If G has a nontrivial abelian factor group, then d_G is linear.
Wiegold dichotomy

Theorem (J. Wiegold, 1974)

Let G be a finite group. If G has a nontrivial abelian factor group, then d_G is linear. Otherwise (that is, if G is perfect) d_G is logarithmic.
Theorem (J. Wiegold, 1974)

G is a finite group. If G has a nontrivial abelian factor group, then d_G is linear. Otherwise (that is, if G is perfect) d_G is logarithmic.

Remarks

- If B is a homomorphic image of A, then $d_B(n) \leq d_A(n)$.
Wiegold dichotomy

Theorem (J. Wiegold, 1974)

\(G\) is a finite group. If \(G\) has a nontrivial abelian factor group, then \(d_G\) is linear. Otherwise (that is, if \(G\) is perfect) \(d_G\) is logarithmic.

Remarks

- If \(B\) is a homomorphic image of \(A\), then \(d_B(n) \leq d_A(n)\). So if \(G\) has an abelian factor, then \(d_G\) is at least linear.
Wiegold dichotomy

Theorem (J. Wiegold, 1974)

G is a finite group. If G has a nontrivial abelian factor group, then d_G is linear. Otherwise (that is, if G is perfect) d_G is logarithmic.

Remarks

- If B is a homomorphic image of A, then $d_B(n) \leq d_A(n)$. So if G has an abelian factor, then d_G is at least linear.
- If B is an expansion of A, then $d_B(n) \leq d_A(n)$.
Wiegold dichotomy

Theorem (J. Wiegold, 1974)

G is a finite group. If G has a nontrivial abelian factor group, then d_G is linear. Otherwise (that is, if G is perfect) d_G is logarithmic.

Remarks

- If B is a homomorphic image of A, then $d_B(n) \leq d_A(n)$. So if G has an abelian factor, then d_G is at least linear.
- If B is an expansion of A, then $d_B(n) \leq d_A(n)$. The richer the structure, the smaller the growth rate.
Wiegold dichotomy

Theorem (J. Wiegold, 1974)

G is a finite group. If G has a nontrivial abelian factor group, then d_G is linear. Otherwise (that is, if G is perfect) d_G is logarithmic.

Remarks

- If B is a homomorphic image of A, then $d_B(n) \leq d_A(n)$. So if G has an abelian factor, then d_G is at least linear.
- If B is an expansion of A, then $d_B(n) \leq d_A(n)$. The richer the structure, the smaller the growth rate.

Wiegold-dichotomy holds for Maltsev algebras (see later).
Wiegold dichotomy

Theorem (J. Wiegold, 1974)

Let G be a finite group. If G has a nontrivial abelian factor group, then d_G is linear. Otherwise (that is, if G is perfect) d_G is logarithmic.

Remarks

- If B is a homomorphic image of A, then $d_B(n) \leq d_A(n)$. So if G has an abelian factor, then d_G is at least linear.
- If B is an expansion of A, then $d_B(n) \leq d_A(n)$. The richer the structure, the smaller the growth rate.

Wiegold-dichotomy holds for Maltsev algebras (see later).

Motivating problem

What are the possible growth rates of finite algebras?
Pointed cube terms

Example: Maltsev-term \((x_1 x_2^{-1} x_3\) in groups).
Pointed cube terms

Example: Maltsev-term \((x_1 x_2^{-1} x_3)\) in groups.

\[
m\left(\begin{array}{ccc}
x & y & y \\
y & y & x \\
y & y & x
\end{array}\right) \approx \left(\begin{array}{c}
x \\
x
\end{array}\right),
\]
Pointed cube terms

Example: Maltsev-term \((x_1x_2^{-1}x_3\) in groups).

\[
m \begin{pmatrix} x & y & y \\ y & y & x \end{pmatrix} \approx \begin{pmatrix} x \\ x \end{pmatrix},
\]

\[\Sigma \models F(M) \approx \begin{pmatrix} x \\ \vdots \\ x \end{pmatrix}.\]
Pointed cube terms

Example: Maltsev-term \((x_1x_2^{-1}x_3 \text{ in groups})\).

\[
m \begin{pmatrix} x & y & y \\ y & y & x \end{pmatrix} \approx \begin{pmatrix} x \\ x \end{pmatrix},
\]

there is a \(k \times m\) matrix \(M\) consisting of variables and \(p\) distinct constant symbols,

\[
\Sigma \models F(M) \approx \begin{pmatrix} x \\ \vdots \\ x \end{pmatrix}.
\]
Pointed cube terms

Example: Maltsev-term \((x_1x_2^{-1}x_3\text{ in groups}).\)

\[
m \left(\begin{array}{ccc} x & y & y \\ y & y & x \end{array} \right) \approx \left(\begin{array}{c} x \\ x \end{array} \right),
\]

there is a \(k \times m\) matrix \(M\) consisting of variables and \(p\) distinct constant symbols, with every column of \(M\) containing a symbol different from \(x\), such that

\[
\Sigma \models F(M) \approx \left(\begin{array}{c} x \\ \vdots \\ x \end{array} \right).
\]
Pointed cube terms

Example: Maltsev-term \((x_1x_2^{-1}x_3\) in groups).

\[
m \left(\begin{array}{ccc} x & y & y \\
y & y & x \end{array} \right) \approx \left(\begin{array}{c} x \\
x \end{array} \right),
\]

\(p\)-pointed,

there is a \(k \times m\) matrix \(M\) consisting of variables and \(p\) distinct constant symbols, with every column of \(M\) containing a symbol different from \(x\), such that

\[
\Sigma \models F(M) \approx \left(\begin{array}{c} x \\
\vdots \\
x \end{array} \right).
\]
Pointed cube terms

Example: Maltsev-term \((x_1x_2^{-1}x_3\) in groups).

\[m \begin{pmatrix} x & y & y \\ y & y & x \end{pmatrix} \approx \begin{pmatrix} x \\ x \end{pmatrix} , \]

p-pointed, *k*-cube term

there is a \(k \times m\) matrix \(M\) consisting of variables and *p* distinct constant symbols, with every column of \(M\) containing a symbol different from \(x\), such that

\[\Sigma \models F(M) \approx \begin{pmatrix} x \\ \vdots \\ x \end{pmatrix} . \]
Pointed cube terms

Example: Maltsev-term \((x_1 x_2^{-1} x_3)\) in groups.

\[
m \begin{pmatrix} x & y & y \\ y & y & x \end{pmatrix} \approx \begin{pmatrix} x \\ x \end{pmatrix},
\]

If \(\Sigma\) is a set of identities in a language \(\mathcal{L}\), then an \(\mathcal{L}\)-term \(F(x_1, \ldots, x_m)\) is a \(p\)-pointed, \(k\)-cube term for the variety axiomatized by \(\Sigma\) if there is a \(k \times m\) matrix \(M\) consisting of variables and \(p\) distinct constant symbols, with every column of \(M\) containing a symbol different from \(x\), such that

\[
\Sigma \models F(M) \approx \begin{pmatrix} x \\ \vdots \\ x \end{pmatrix}.
\]
Pointed cube terms

Example: Maltsev-term \((x_1 x_2^{-1} x_3)\) in groups.

\[
m \begin{pmatrix} x & y & y \\ y & y & x \end{pmatrix} \approx \begin{pmatrix} x \\ x \end{pmatrix},
\]

witnesses that \(m(x_1, x_2, x_3)\) is a 3-ary,

If \(\Sigma\) is a set of identities in a language \(L\), then an \(L\)-term \(F(x_1, \ldots, x_m)\) is a \(p\)-pointed, \(k\)-cube term for the variety axiomatized by \(\Sigma\) if there is a \(k \times m\) matrix \(M\) consisting of variables and \(p\) distinct constant symbols, with every column of \(M\) containing a symbol different from \(x\), such that

\[
\Sigma \models F(M) \approx \begin{pmatrix} x \\ \vdots \\ x \end{pmatrix}.
\]
Pointed cube terms

Example: Maltsev-term \((x_1x_2^{-1}x_3\) in groups).

\[
m(m(x, y, y) \approx (x, y, x)) \approx (x),
\]

witnesses that \(m(x_1, x_2, x_3)\) is a 3-ary, 0-pointed,

If \(\Sigma\) is a set of identities in a language \(\mathcal{L}\), then an \(\mathcal{L}\)-term \(F(x_1, \ldots, x_m)\) is a \(p\)-pointed, \(k\)-cube term for the variety axiomatized by \(\Sigma\) if there is a \(k \times m\) matrix \(M\) consisting of variables and \(p\) distinct constant symbols, with every column of \(M\) containing a symbol different from \(x\), such that

\[
\Sigma \models F(M) \approx \begin{pmatrix} x \\ \vdots \\ x \end{pmatrix}.
\]
Pointed cube terms

Example: Maltsev-term \((x_1x_2^{-1}x_3\) in groups).

\[
m\left(\begin{array}{ccc}
x & y & y \\
y & y & x \\
x & y & y \\
x & x & x
\end{array}\right) \approx \left(\begin{array}{c}
x \\
x
\end{array}\right),
\]

witnesses that \(m(x_1, x_2, x_3)\) is a 3-ary, 0-pointed, 2-cube term.

If \(\Sigma\) is a set of identities in a language \(\mathcal{L}\), then an \(\mathcal{L}\)-term \(F(x_1, \ldots, x_m)\) is a \(p\)-pointed, \(k\)-cube term for the variety axiomatized by \(\Sigma\) if there is a \(k \times m\) matrix \(M\) consisting of variables and \(p\) distinct constant symbols, with every column of \(M\) containing a symbol different from \(x\), such that

\[
\Sigma \models F(M) \approx \left(\begin{array}{c}
x \\
\vdots \\
x
\end{array}\right).
\]
Growth restrictions imposed by identities

Theorem (KKSz)

Let A be an algebra with an m-ary, $p \geq 1$-pointed, k-cube term, with at least one constant symbol appearing in the cube identities.
Growth restrictions imposed by identities

Theorem (KKSz)

Let A be an algebra with an m-ary, $p \geq 1$-pointed, k-cube term, with at least one constant symbol appearing in the cube identities. If A^{p+k-1} is finitely generated, then all finite powers of A are finitely generated.
Growth restrictions imposed by identities

Theorem (KKSz)

Let A be an algebra with an m-ary, $p \geq 1$-pointed, k-cube term, with at least one constant symbol appearing in the cube identities. If A^{p+k-1} is finitely generated, then all finite powers of A are finitely generated and $d_A(n)$ is bounded above by a polynomial of degree at most $\log_w(m)$, where $w = 2k/(2k - 1)$.
Growth restrictions imposed by identities

Theorem (KKSz)

Let A be an algebra with an m-ary, $p \geq 1$-pointed, k-cube term, with at least one constant symbol appearing in the cube identities. If A^{p+k-1} is finitely generated, then all finite powers of A are finitely generated and $d_A(n)$ is bounded above by a polynomial of degree at most $\log_w(m)$, where $w = 2k/(2k - 1)$.

- There exist finite algebras with pointed cube terms whose growth rate is \sim to a polynomial of any prescribed degree.
Growth restrictions imposed by identities

Theorem (KKSz)

Let A be an algebra with an m-ary, $p \geq 1$-pointed, k-cube term, with at least one constant symbol appearing in the cube identities. If A^{p+k-1} is finitely generated, then all finite powers of A are finitely generated and $d_A(n)$ is bounded above by a polynomial of degree at most $\log_w(m)$, where $w = 2k/(2k - 1)$.

- There exist finite algebras with pointed cube terms whose growth rate is \sim to a polynomial of any prescribed degree.
- The growth rate of any algebra with a pointed cube term arises as the growth rate of an algebra without a pointed cube term.
Growth restrictions imposed by identities

Theorem (KKSz)

Let A be an algebra with an m-ary, $p \geq 1$-pointed, k-cube term, with at least one constant symbol appearing in the cube identities. If A^{p+k-1} is finitely generated, then all finite powers of A are finitely generated and $d_A(n)$ is bounded above by a polynomial of degree at most $\log_w(m)$, where $w = 2k/(2k - 1)$.

- There exist finite algebras with pointed cube terms whose growth rate is \sim to a polynomial of any prescribed degree.
- The growth rate of any algebra with a pointed cube term arises as the growth rate of an algebra without a pointed cube term.
- If a **basic** Σ does not entail the existence of a pointed cube term, then Σ imposes no restriction on growth rates. “Basic” identity: at most one operation symbol on both sides.
General Wiegold dichotomy

If A has a 0-pointed cube term, then it generates a congruence modular variety.
General Wiegold dichotomy

If A has a 0-pointed cube term, then it generates a congruence modular variety. We say that A is perfect, if $[1_A, 1_A] = 1_A$ (in the sense of the modular commutator).
General Wiegold dichotomy

If A has a 0-pointed cube term, then it generates a congruence modular variety. We say that A is perfect, if $[1_A, 1_A] = 1_A$ (in the sense of the modular commutator).
That is, A is perfect iff it has no nontrivial abelian factor algebras.
General Wiegold dichotomy

If \(A \) has a 0-pointed cube term, then it generates a congruence modular variety. We say that \(A \) is **perfect**, if \([1_A, 1_A] = 1_A\) (in the sense of the modular commutator). That is, \(A \) is perfect iff it has no nontrivial abelian factor algebras.

Theorem (KKSz)

Suppose that an algebra \(A \) has a 0-pointed, \(k \)-cube term
General Wiegold dichotomy

If A has a 0-pointed cube term, then it generates a congruence modular variety. We say that A is perfect, if $[1_A, 1_A] = 1_A$ (in the sense of the modular commutator).

That is, A is perfect iff it has no nontrivial abelian factor algebras.

Theorem (KKSz)

Suppose that an algebra A has a 0-pointed, k-cube term and A^k is finitely generated.
General Wiegold dichotomy

If A has a 0-pointed cube term, then it generates a congruence modular variety. We say that A is perfect, if $[1_A, 1_A] = 1_A$ (in the sense of the modular commutator).
That is, A is perfect iff it has no nontrivial abelian factor algebras.

Theorem (KKSz)

Suppose that an algebra A has a 0-pointed, k-cube term and A^k is finitely generated.

- A perfect $\implies d_A(n) = O(\log(n))$.

If \(A \) has a 0-pointed cube term, then it generates a congruence modular variety. We say that \(A \) is perfect, if \([1_A, 1_A] = 1_A \) (in the sense of the modular commutator).
That is, \(A \) is perfect iff it has no nontrivial abelian factor algebras.

Theorem (KKSz)

Suppose that an algebra \(A \) has a 0-pointed, \(k \)-cube term and \(A^k \) is finitely generated.

- \(A \) perfect \(\implies \) \(d_A(n) = O(\log(n)) \).
- \(A \) imperfect \(\implies \) \(d_A(n) = O(n) \).
General Wiegold dichotomy

If A has a 0-pointed cube term, then it generates a congruence modular variety. We say that A is **perfect**, if $[1_A, 1_A] = 1_A$ (in the sense of the modular commutator).

That is, A is perfect iff it has no nontrivial abelian factor algebras.

Theorem (KKSz)

Suppose that an algebra A has a 0-pointed, k-cube term and A^k is finitely generated.

- A perfect $\implies d_A(n) = O(\log(n))$.
- A imperfect $\implies d_A(n) = O(n)$.

- Suppose that A is finite.
If \(A \) has a 0-pointed cube term, then it generates a congruence modular variety. We say that \(A \) is perfect, if \([1_A, 1_A] = 1_A\) (in the sense of the modular commutator).
That is, \(A \) is perfect iff it has no nontrivial abelian factor algebras.

Theorem (KKSz)

Suppose that an algebra \(A \) has a 0-pointed, \(k \)-cube term and \(A^k \) is finitely generated.

- \(A \) perfect \(\implies \) \(d_A(n) = O(\log(n)) \).
- \(A \) imperfect \(\implies \) \(d_A(n) = O(n) \).
- Suppose that \(A \) is finite. \(A \) perfect \(\implies \) \(d_A(n) = \Theta(\log(n)) \).
General Wiegold dichotomy

If A has a 0-pointed cube term, then it generates a congruence modular variety. We say that A is **perfect**, if $[1_A, 1_A] = 1_A$ (in the sense of the modular commutator). That is, A is perfect iff it has no nontrivial abelian factor algebras.

Theorem (KKSz)

Suppose that an algebra A has a 0-pointed, k-cube term and A^k is finitely generated.

- A perfect $\implies d_A(n) = O(\log(n))$.
- A imperfect $\implies d_A(n) = O(n)$.

Suppose that A is finite. A perfect $\implies d_A(n) = \Theta(\log(n))$.
- A imperfect $\implies d_A(n) = \Theta(n)$.
General Wiegold dichotomy

If A has a 0-pointed cube term, then it generates a congruence modular variety. We say that A is perfect, if $[1_A, 1_A] = 1_A$ (in the sense of the modular commutator).
That is, A is perfect iff it has no nontrivial abelian factor algebras.

Theorem (KKSz)
Suppose that an algebra A has a 0-pointed, k-cube term and A^k is finitely generated.

- A perfect $\implies d_A(n) = O(\log(n))$.
- A imperfect $\implies d_A(n) = O(n)$.

Suppose that A is finite. A perfect $\implies d_A(n) = \Theta(\log(n))$.
- A imperfect $\implies d_A(n) = \Theta(n)$.

The proof uses a probabilistic argument of independent interest.
Abelianness properties

By R. McKenzie and D. Hobby in tame congruence theory:

If $\alpha, \beta, \delta \in \text{Con}(A)$, then α centralizes β modulo δ, that is, $C(\alpha, \beta; \delta)$ holds iff
Abelianness properties

By R. McKenzie and D. Hobby in tame congruence theory:

If $\alpha, \beta, \delta \in \text{Con}(A)$, then α centralizes β modulo δ, that is, $C(\alpha, \beta; \delta)$ holds iff for all polynomials t of A we have

$(\forall a \equiv_\alpha b)(\forall c \equiv_\beta d) \quad t(a, c) \equiv_\delta t(a, d) \implies t(b, c) \equiv_\delta t(b, d)$.
Abelianness properties

By R. McKenzie and D. Hobby in tame congruence theory:

If $\alpha, \beta, \delta \in \text{Con}(A)$, then α centralizes β modulo δ, that is, $C(\alpha, \beta; \delta)$ holds iff for all polynomials t of A we have

$$(\forall a \equiv_\alpha b)(\forall c \equiv_\beta d) \ t(a, c) \equiv_\delta t(a, d) \implies t(b, c) \equiv_\delta t(b, d).$$

The commutator: $[\alpha, \beta] = \bigwedge\{\delta \in \text{Con}(A) : C(\alpha, \beta; \delta) \text{ holds}\}$.
Abelianness properties

By R. McKenzie and D. Hobby in tame congruence theory:

If $\alpha, \beta, \delta \in \text{Con}(A)$, then α centralizes β modulo δ, that is, $C(\alpha, \beta; \delta)$ holds iff for all polynomials t of A we have

$$(\forall a \equiv_\alpha b)(\forall c \equiv_\beta d) \quad t(a, c) \equiv_\delta t(a, d) \implies t(b, c) \equiv_\delta t(b, d).$$

The commutator: $[\alpha, \beta] = \bigwedge \{\delta \in \text{Con}(A) : C(\alpha, \beta; \delta) \text{ holds}\}$.

A is abelian if $[1_A, 1_A] = 0_A$
Abelianness properties

By R. McKenzie and D. Hobby in tame congruence theory:

If $\alpha, \beta, \delta \in \text{Con}(A)$, then α centralizes β modulo δ, that is, $C(\alpha, \beta; \delta)$ holds iff for all polynomials t of A we have

$$(\forall a \equiv_\alpha b)(\forall c \equiv_\beta d) \quad t(a, c) \equiv_\delta t(a, d) \implies t(b, c) \equiv_\delta t(b, d).$$

The commutator: $[\alpha, \beta] = \wedge\{\delta \in \text{Con}(A) : C(\alpha, \beta; \delta) \text{ holds}\}$.

A is abelian if $[1_A, 1_A] = 0_A$ (that is, $C(1_A, 1_A; 0_A)$ holds).
Abelianness properties

By R. McKenzie and D. Hobby in tame congruence theory:

If $\alpha, \beta, \delta \in \text{Con}(A)$, then α centralizes β modulo δ, that is, $C(\alpha, \beta; \delta)$ holds iff for all polynomials t of A we have

$$(\forall a \equiv_\alpha b)(\forall c \equiv_\beta d) \quad t(a, c) \equiv_\delta t(a, d) \implies t(b, c) \equiv_\delta t(b, d).$$

The commutator: $[\alpha, \beta] = \bigwedge \{\delta \in \text{Con}(A) : C(\alpha, \beta; \delta) \text{ holds}\}$.

A is abelian if $[1_A, 1_A] = 0_A$ (that is, $C(1_A, 1_A; 0_A)$ holds).

Homomorphic images of abelian algebras are not always abelian.
Abelianness properties

By R. McKenzie and D. Hobby in tame congruence theory:

If $\alpha, \beta, \delta \in \text{Con}(A)$, then α centralizes β modulo δ, that is, $C(\alpha, \beta; \delta)$ holds iff for all polynomials t of A we have

$$(\forall a \equiv_\alpha b)(\forall c \equiv_\beta d) \quad t(a, c) \equiv_\delta t(a, d) \implies t(b, c) \equiv_\delta t(b, d).$$

The commutator: $[\alpha, \beta] = \bigwedge\{\delta \in \text{Con}(A) : C(\alpha, \beta; \delta) \text{ holds}\}$.

A is abelian if $[1_A, 1_A] = 0_A$ (that is, $C(1_A, 1_A; 0_A)$ holds).

Homomorphic images of abelian algebras are not always abelian.

A is solvable, if there is a chain of congruences $0_A = \theta_0 < \theta_1 < \ldots < \theta_n = 1_A$.
Abelianness properties

By R. McKenzie and D. Hobby in tame congruence theory:

If $\alpha, \beta, \delta \in \text{Con}(A)$, then α centralizes β modulo δ, that is, $C(\alpha, \beta; \delta)$ holds iff for all polynomials t of A we have

$$(\forall a \equiv_{\alpha} b)(\forall c \equiv_{\beta} d) \quad t(a, c) \equiv_{\delta} t(a, d) \implies t(b, c) \equiv_{\delta} t(b, d).$$

The commutator: $[\alpha, \beta] = \bigwedge\{\delta \in \text{Con}(A) : C(\alpha, \beta; \delta) \text{ holds}\}$.

A is abelian if $[1_A, 1_A] = 0_A$ (that is, $C(1_A, 1_A; 0_A)$ holds).

Homomorphic images of abelian algebras are not always abelian.

A is solvable, if there is a chain of congruences

$0_A = \theta_0 < \theta_1 < \ldots < \theta_n = 1_A$ such that each θ_{i+1}/θ_i is abelian.
Abelianness properties

By R. McKenzie and D. Hobby in tame congruence theory:

If \(\alpha, \beta, \delta \in \text{Con}(A) \), then \(\alpha \) centralizes \(\beta \) modulo \(\delta \), that is, \(C(\alpha, \beta; \delta) \) holds iff for all polynomials \(t \) of \(A \) we have
\[
(\forall a \equiv_{\alpha} b)(\forall c \equiv_{\beta} d) \quad t(a, c) \equiv_{\delta} t(a, d) \implies t(b, c) \equiv_{\delta} t(b, d).
\]
The commutator: \([\alpha, \beta] = \bigwedge \{ \delta \in \text{Con}(A) : C(\alpha, \beta; \delta) \text{ holds} \} \).

\(A \) is abelian if \([1_A, 1_A] = 0_A \) (that is, \(C(1_A, 1_A; 0_A) \) holds).
Homomorphomorphic images of abelian algebras are not always abelian.

\(A \) is solvable, if there is a chain of congruences
\(0_A = \theta_0 < \theta_1 < \ldots < \theta_n = 1_A \) such that each \(\theta_{i+1}/\theta_i \) is abelian.
Can be expressed with the commutator the same way as for groups.
Abelianness properties

By R. McKenzie and D. Hobby in tame congruence theory:

If $\alpha, \beta, \delta \in \text{Con}(A)$, then α centralizes β modulo δ, that is, $C(\alpha, \beta; \delta)$ holds iff for all polynomials t of A we have:

$$(\forall a \equiv_\alpha b)(\forall c \equiv_\beta d) \quad t(a, c) \equiv_\delta t(a, d) \implies t(b, c) \equiv_\delta t(b, d).$$

The commutator: $[\alpha, \beta] = \bigwedge \{\delta \in \text{Con}(A) : C(\alpha, \beta; \delta) \text{ holds}\}$.

A is abelian if $[1_A, 1_A] = 0_A$ (that is, $C(1_A, 1_A; 0_A) \text{ holds}$).

Homomorphically, images of abelian algebras are not always abelian.

A is solvable, if there is a chain of congruences:

$0_A = \theta_0 < \theta_1 < \ldots < \theta_n = 1_A$ such that each θ_{i+1}/θ_i is abelian.

Can be expressed with the commutator the same way as for groups.

Homomorphically, images,
Abelianness properties

By R. McKenzie and D. Hobby in tame congruence theory:

If \(\alpha, \beta, \delta \in \text{Con}(A) \), then \(\alpha \) centralizes \(\beta \) modulo \(\delta \), that is, \(C(\alpha, \beta; \delta) \) holds iff for all polynomials \(t \) of \(A \) we have

\[
(\forall a \equiv_{\alpha} b)(\forall c \equiv_{\beta} d) \quad t(a, c) \equiv_{\delta} t(a, d) \implies t(b, c) \equiv_{\delta} t(b, d).
\]

The commutator: \([\alpha, \beta] = \wedge\{\delta \in \text{Con}(A) : C(\alpha, \beta; \delta) \text{ holds}\} \).

A is abelian if \([1_A, 1_A] = 0_A \) (that is, \(C(1_A, 1_A; 0_A) \) holds).

Homomorphic images of abelian algebras are not always abelian.

A is solvable, if there is a chain of congruences

\(0_A = \theta_0 < \theta_1 < \ldots < \theta_n = 1_A \)

such that each \(\theta_{i+1}/\theta_i \) is abelian.

Can be expressed with the commutator the same way as for groups.

Homomorphic images, direct products.
Abelianness properties

By R. McKenzie and D. Hobby in tame congruence theory:

If $\alpha, \beta, \delta \in \text{Con}(A)$, then α centralizes β modulo δ, that is, $C(\alpha, \beta; \delta)$ holds iff for all polynomials t of A we have

$$(\forall a \equiv_\alpha b)(\forall c \equiv_\beta d) \ t(a, c) \equiv_\delta t(a, d) \implies t(b, c) \equiv_\delta t(b, d).$$

The commutator: $[\alpha, \beta] = \bigwedge \{\delta \in \text{Con}(A) : C(\alpha, \beta; \delta) \text{ holds}\}$.

A is abelian if $[1_A, 1_A] = 0_A$ (that is, $C(1_A, 1_A; 0_A)$ holds).

Homomorphomorphic images of abelian algebras are not always abelian.

A is solvable, if there is a chain of congruences $0_A = \theta_0 < \theta_1 < \ldots < \theta_n = 1_A$ such that each θ_{i+1}/θ_i is abelian.

Can be expressed with the commutator the same way as for groups. Homomorphomorphic images, direct products and subalgebras of finite solvable algebras are solvable.
Abelianness properties

By R. McKenzie and D. Hobby in tame congruence theory:

If $\alpha, \beta, \delta \in \text{Con}(A)$, then α centralizes β modulo δ, that is, $C(\alpha, \beta; \delta)$ holds iff for all polynomials t of A we have

$$(\forall a \equiv_\alpha b)(\forall c \equiv_\beta d) \quad t(a, c) \equiv_\delta t(a, d) \implies t(b, c) \equiv_\delta t(b, d).$$

The commutator: $[\alpha, \beta] = \bigwedge \{\delta \in \text{Con}(A) : C(\alpha, \beta; \delta) \text{ holds}\}$.

A is abelian if $[1_A, 1_A] = 0_A$ (that is, $C(1_A, 1_A; 0_A)$ holds).

Homomorphic images of abelian algebras are not always abelian.

A is solvable, if there is a chain of congruences $0_A = \theta_0 < \theta_1 < \ldots < \theta_n = 1_A$ such that each θ_{i+1}/θ_i is abelian.

Can be expressed with the commutator the same way as for groups.

Homomorphic images, direct products and subalgebras of finite solvable algebras are solvable. A finite algebra is solvable iff only the types 1 and 2 of tame congruence theory occur in it.
Nilpotence

Developed by K. Kearnes:

When $\alpha \in \text{Con}(A)$ define $(\alpha)^1 = [\alpha]^1 = \alpha$
Developed by K. Kearnes:

When $\alpha \in \text{Con}(A)$ define $(\alpha)^{1} = [\alpha]^{1} = \alpha$ and
\[
(\alpha)^{k+1} = [\alpha, (\alpha)^{k}], \quad [\alpha]^{k+1} = [[[\alpha]^{k}, \alpha].
\]
Nilpotence

Developed by K. Kearnes:

When $\alpha \in \text{Con}(A)$ define $(\alpha)^{1} = [\alpha]^{1} = \alpha$ and

$$(\alpha)^{k+1} = [\alpha, (\alpha)^{k}], \quad [(\alpha)^{k}, \alpha].$$

If $(\alpha)^{n+1} = 0$, then α is n-step left nilpotent,
Nilpotence

Developed by K. Kearnes:

When $\alpha \in \text{Con}(A)$ define $(\alpha)^1 = [\alpha] = \alpha$ and

$$
(\alpha)^{k+1} = [\alpha, (\alpha)^k], \quad [\alpha]^{k+1} = [[\alpha]^k, \alpha].
$$

If $(\alpha)^{n+1} = 0$, then α is n-step left nilpotent,

if $[\alpha]^{n+1} = 0$, then α is n-step right nilpotent.
Nilpotence

Developed by K. Kearnes:

When $\alpha \in \text{Con}(A)$ define $(\alpha)^1 = [\alpha]^1 = \alpha$ and

$$(\alpha)^{k+1} = [\alpha, (\alpha)^k], \quad [\alpha]^{k+1} = [[\alpha]^k, \alpha].$$

If $(\alpha)^{n+1} = 0$, then α is *n*-step left nilpotent,
if $[\alpha]^{n+1} = 0$, then α is *n*-step right nilpotent.

Right nilpotent congruences are left nilpotent in finite algebras.
Nilpotence

Developed by K. Kearnes:

When $\alpha \in \text{Con}(A)$ define $(\alpha)^1 = [\alpha]^1 = \alpha$ and

$$(\alpha)^{k+1} = [\alpha, (\alpha)^k], \quad [\alpha]^{k+1} = [[\alpha]^k, \alpha].$$

If $(\alpha)^{n+1} = 0$, then α is n-step left nilpotent,
if $[\alpha]^{n+1} = 0$, then α is n-step right nilpotent.

Right nilpotent congruences are left nilpotent in finite algebras.
Left nilpotence implies the following condition:

$C(1_A, N^2; \delta)$ holds whenever $\delta \prec \theta$ and N is a $\langle \delta, \theta \rangle$-trace. \(\dagger\)
Nilpotence

Developed by K. Kearnes:

When \(\alpha \in \text{Con}(A) \) define \((\alpha)^1 = [\alpha]^1 = \alpha \) and
\[
(\alpha)^{k+1} = [\alpha, (\alpha)^k], \quad [\alpha]^{k+1} = [[[\alpha]^k, \alpha].
\]

If \((\alpha)^{n+1} = 0\), then \(\alpha \) is \(n \)-step left nilpotent,
if \([\alpha]^{n+1} = 0\), then \(\alpha \) is \(n \)-step right nilpotent.

Right nilpotent congruences are left nilpotent in finite algebras.
Left nilpotence implies the following condition:
\[
C(1_A, N^2; \delta) \text{ holds whenever } \delta \prec \theta \text{ and } N \text{ is a } \langle \delta, \theta \rangle\text{-trace.} \quad (\dagger)
\]
(Here \(N^2 \) is considered as a binary relation, and centrality is defined naturally).
Nilpotence

Developed by K. Kearnes:

When $\alpha \in \text{Con}(A)$ define $(\alpha)^1 = [\alpha]^1 = \alpha$ and

$$(\alpha)^{k+1} = [\alpha, (\alpha)^k], \quad [\alpha]^{k+1} = [(\alpha)^k, \alpha].$$

If $(\alpha)^{n+1} = 0$, then α is n-step left nilpotent,
if $[\alpha]^{n+1} = 0$, then α is n-step right nilpotent.

Right nilpotent congruences are left nilpotent in finite algebras.
Left nilpotence implies the following condition:

$$C(1_A, N^2; \delta) \text{ holds whenever } \delta \prec \theta \text{ and } N \text{ is a } \langle \delta, \theta \rangle\text{-trace.} \quad (\dagger)$$

(Here N^2 is considered as a binary relation, and centrality is defined naturally). This condition is still stronger than solvability.
Nilpotence

Developed by K. Kearnes:

When $\alpha \in \text{Con}(\mathbf{A})$ define $(\alpha)^1 = [\alpha]^1 = \alpha$ and

$$(\alpha)^{k+1} = [\alpha, (\alpha)^k], \quad [(\alpha)^k, \alpha].$$

If $(\alpha)^{n+1} = 0$, then α is n-step left nilpotent,
if $[\alpha]^{n+1} = 0$, then α is n-step right nilpotent.

Right nilpotent congruences are left nilpotent in finite algebras.
Left nilpotence implies the following condition:

$$C(1_{\mathbf{A}}, N^2; \delta) \text{ holds whenever } \delta \prec \theta \text{ and } N \text{ is a } \langle \delta, \theta \rangle\text{-trace.} \quad (\dagger)$$

(Here N^2 is considered as a binary relation, and centrality is defined naturally). This condition is still stronger than solvability.

Theorem (K. Kearnes)

Homomorphic images of finite abelian algebras are right nilpotent.
The Hamiltonian property

A is Hamiltonian: every subalgebra is a congruence block.
The Hamiltonian property

\textbf{A is Hamiltonian}: every subalgebra is a congruence block.

\textbf{quasi-Hamiltonian}: every maximal subalgebra is a congruence-block.
The Hamiltonian property

A is Hamiltonian: every subalgebra is a congruence block.

quasi-Hamiltonian: every maximal subalgebra is a congruence-block.

Theorem (E. W. Kiss, M. Valeriote)

A locally finite variety is abelian iff it is Hamiltonian.
The Hamiltonian property

A is Hamiltonian: every subalgebra is a congruence block.

quasi-Hamiltonian: every maximal subalgebra is a congruence-block.

Theorem (E. W. Kiss, M. Valeriote)

A locally finite variety is abelian iff it is Hamiltonian.

Wielandt: A finite group is quasi-Hamiltonian (that is, every maximal subgroup is normal) iff it is nilpotent.
The Hamiltonian property

A is Hamiltonian: every subalgebra is a congruence block.

quasi-Hamiltonian: every maximal subalgebra is a congruence-block.

Theorem (E. W. Kiss, M. Valeriote)
A locally finite variety is abelian iff it is Hamiltonian.

Wielandt: A finite group is quasi-Hamiltonian (that is, every maximal subgroup is normal) iff it is nilpotent.

Theorem (K. Kearnes)
If a finite algebra A satisfies $(†)$, then it is quasi-Hamiltonian.
The Hamiltonian property

A is Hamiltonian: every subalgebra is a congruence block.

quasi-Hamiltonian: every maximal subalgebra is a congruence-block.

Theorem (E. W. Kiss, M. Valeriote)

A locally finite variety is abelian iff it is Hamiltonian.

Wielandt: A finite group is quasi-Hamiltonian (that is, every maximal subgroup is normal) iff it is nilpotent.

Theorem (K. Kearnes)

If a finite algebra A satisfies (†), then it is quasi-Hamiltonian.

A variety generated by a finite left nilpotent algebra is quasi-Hamiltonian.
The Hamiltonian property

A is Hamiltonian: every subalgebra is a congruence block.

quasi-Hamiltonian: every maximal subalgebra is a congruence-block.

Theorem (E. W. Kiss, M. Valeriote)

A locally finite variety is abelian iff it is Hamiltonian.

Wielandt: A finite group is quasi-Hamiltonian (that is, every maximal subgroup is normal) iff it is nilpotent.

Theorem (K. Kearnes)

If a finite algebra A satisfies $(†)$, then it is quasi-Hamiltonian.

A variety generated by a finite left nilpotent algebra is quasi-Hamiltonian. Conversely, if A^2 is quasi-Hamiltonian, then $V(A)$ is quasi-Hamiltonian,
The Hamiltonian property

\(A \) is **Hamiltonian**: every subalgebra is a congruence block.

quasi-Hamiltonian: every maximal subalgebra is a congruence-block.

Theorem (E. W. Kiss, M. Valeriote)

A locally finite variety is abelian iff it is Hamiltonian.

Wielandt: A finite group is quasi-Hamiltonian (that is, every maximal subgroup is normal) iff it is nilpotent.

Theorem (K. Kearnes)

If a finite algebra \(A \) satisfies (†), then it is quasi-Hamiltonian. A variety generated by a finite left nilpotent algebra is quasi-Hamiltonian. Conversely, if \(A^2 \) is quasi-Hamiltonian, then \(V(A) \) is quasi-Hamiltonian, and its finite members satisfy (†).
Strongly abelian algebras

An algebra A is strongly abelian, if for all polynomials t we have

$$(\forall a, b, c, d, e) \quad t(a, c) = t(b, d) \implies t(e, c) = t(e, d).$$
Strongly abelian algebras

An algebra \mathbf{A} is strongly abelian, if for all polynomials t we have

$$(\forall a, b, c, d, e) \quad t(a, c) = t(b, d) \implies t(e, c) = t(e, d).$$

Let \mathbf{A} be a nontrivial finite algebra and let \mathbf{B} be a nontrivial homomorphic image of \mathbf{A}^k for some k.
Strongly abelian algebras

An algebra \mathbf{A} is strongly abelian, if for all polynomials t we have
\[(\forall a, b, c, d, e) \quad t(a, c) = t(b, d) \implies t(e, c) = t(e, d).\]

Let \mathbf{A} be a nontrivial finite algebra and let \mathbf{B} be a nontrivial homomorphic image of \mathbf{A}^k for some k.

- If \mathbf{B} is strongly abelian, then $d_\mathbf{A}(n) = 2^{\Theta(n)}$ (exponential).
Strongly abelian algebras

An algebra A is strongly abelian, if for all polynomials t we have

$$\left(\forall a, b, c, d, e \right) \quad t(a, c) = t(b, d) \implies t(e, c) = t(e, d).$$

Let A be a nontrivial finite algebra and let B be a nontrivial homomorphic image of A^k for some k.

- If B is strongly abelian, then $d_A(n) = 2^{\Theta(n)}$ (exponential).
- If B is abelian, then $d_A(n) = \Omega(n)$ (at least linear).
Strongly abelian algebras

An algebra A is strongly abelian, if for all polynomials t we have

$$\forall a, b, c, d, e \quad t(a, c) = t(b, d) \implies t(e, c) = t(e, d).$$

Let A be a nontrivial finite algebra and let B be a nontrivial homomorphic image of A^k for some k.

- If B is strongly abelian, then $d_A(n) = 2^{\Theta(n)}$ (exponential).
- If B is abelian, then $d_A(n) = \Omega(n)$ (at least linear).

This holds, because the free algebras in the first case have polynomially bounded size,
Strongly abelian algebras

An algebra A is strongly abelian, if for all polynomials t we have

$$(\forall a, b, c, d, e) \quad t(a, c) = t(b, d) \implies t(e, c) = t(e, d).$$

Let A be a nontrivial finite algebra and let B be a nontrivial homomorphic image of A^k for some k.

- If B is strongly abelian, then $d_A(n) = 2^{\Theta(n)}$ (exponential).
- If B is abelian, then $d_A(n) = \Omega(n)$ (at least linear).

This holds, because the free algebras in the first case have polynomially bounded size, and in the second case their size is in $2^{O(n)}$ by a result of J. Berman and R. McKenzie.
Strongly abelian algebras

An algebra A is strongly abelian, if for all polynomials t we have

$$(\forall a, b, c, d, e) \quad t(a, c) = t(b, d) \implies t(e, c) = t(e, d).$$

Let A be a nontrivial finite algebra and let B be a nontrivial homomorphic image of A^k for some k.

- If B is strongly abelian, then $d_A(n) = 2^{\Theta(n)}$ (exponential).
- If B is abelian, then $d_A(n) = \Omega(n)$ (at least linear).

This holds, because the free algebras in the first case have polynomially bounded size, and in the second case their size is in $2^{O(n)}$ by a result of J. Berman and R. McKenzie.

Each simple factor algebra of a finite solvable algebra A is either abelian or strongly abelian,
Strongly abelian algebras

An algebra A is strongly abelian, if for all polynomials t we have

$$(\forall a, b, c, d, e) \quad t(a, c) = t(b, d) \implies t(e, c) = t(e, d).$$

Let A be a nontrivial finite algebra and let B be a nontrivial homomorphic image of A^k for some k.

- If B is strongly abelian, then $d_A(n) = 2^{\Theta(n)}$ (exponential).
- If B is abelian, then $d_A(n) = \Omega(n)$ (at least linear).

This holds, because the free algebras in the first case have polynomially bounded size, and in the second case their size is in $2^{O(n)}$ by a result of J. Berman and R. McKenzie.

Each simple factorialgebra of a finite solvable algebra A is either abelian or strongly abelian, so $d_A(n)$ is at least linear.
The hierarchy of abelianness properties

(1) A is solvable.
The hierarchy of abelianness properties

(1) A is solvable.
(2) A is (left) nilpotent.
The hierarchy of abelianness properties

(1) \(A \) is solvable.
(2) \(A \) is (left) nilpotent.
(3) \(A \) is abelian.
The hierarchy of abelianness properties

(1) A is solvable.

(2) A is (left) nilpotent.

(3) A is abelian.

(4) A is a subdirect product of simple abelian algebras.
The hierarchy of abelianness properties

(1) A is solvable.
(2) A is (left) nilpotent.
(3) A is abelian.
(4) A is a subdirect product of simple abelian algebras.
(5) A generates an abelian variety.
The hierarchy of abelianness properties

(1) A is solvable.
(2) A is (left) nilpotent.
(3) A is abelian.
(4) A is a subdirect product of simple abelian algebras.
(5) A generates an abelian variety.

We have $(4) \implies (3) \implies (2) \implies (1)$
The hierarchy of abelianness properties

(1) A is solvable.
(2) A is (left) nilpotent.
(3) A is abelian.
(4) A is a subdirect product of simple abelian algebras.
(5) A generates an abelian variety.

We have (4) \Rightarrow (3) \Rightarrow (2) \Rightarrow (1) and (5) \Rightarrow (3).
The hierarchy of abelianness properties

(1) A is solvable.
(2) A is (left) nilpotent.
(3) A is abelian.
(4) A is a subdirect product of simple abelian algebras.
(5) A generates an abelian variety.

We have $(4) \Rightarrow (3) \Rightarrow (2) \Rightarrow (1)$ and $(5) \Rightarrow (3)$.
No other implications hold (except the formal consequences).
The hierarchy of abelianness properties

(1) \(A \) is solvable.
(2) \(A \) is (left) nilpotent.
(3) \(A \) is abelian.
(4) \(A \) is a subdirect product of simple abelian algebras.
(5) \(A \) generates an abelian variety.

We have (4) \(\Rightarrow \) (3) \(\Rightarrow \) (2) \(\Rightarrow \) (1) and (5) \(\Rightarrow \) (3).

No other implications hold (except the formal consequences).

We prove that stronger abelianness properties yield
The hierarchy of abelianness properties

(1) A is solvable.
(2) A is (left) nilpotent.
(3) A is abelian.
(4) A is a subdirect product of simple abelian algebras.
(5) A generates an abelian variety.

We have (4) \Rightarrow (3) \Rightarrow (2) \Rightarrow (1) and (5) \Rightarrow (3).
No other implications hold (except the formal consequences).

We prove that stronger abelianness properties yield a closer relationship between various growth-restricting conditions.
The hierarchy of abelianness properties

(1) \(A \) is solvable.
(2) \(A \) is (left) nilpotent.
(3) \(A \) is abelian.
(4) \(A \) is a subdirect product of simple abelian algebras.
(5) \(A \) generates an abelian variety.

We have \((4) \Rightarrow (3) \Rightarrow (2) \Rightarrow (1)\) and \((5) \Rightarrow (3)\).
No other implications hold (except the formal consequences).

We prove that stronger abelianness properties yield a closer relationship between various growth-restricting conditions.
Example: Both \((5)\) and \((4)\) imply that the growth rate is non-exponential iff
The hierarchy of abelianness properties

(1) A is solvable.
(2) A is (left) nilpotent.
(3) A is abelian.
(4) A is a subdirect product of simple abelian algebras.
(5) A generates an abelian variety.

We have (4) \(\Rightarrow\) (3) \(\Rightarrow\) (2) \(\Rightarrow\) (1) and (5) \(\Rightarrow\) (3).
No other implications hold (except the formal consequences).

We prove that stronger abelianness properties yield a closer relationship between various growth-restricting conditions.

Example: Both (5) and (4) imply that the growth rate is non-exponential iff A has a Maltsev term.
The hierarchy of abelianness properties

(1) \(A \) is solvable.
(2) \(A \) is (left) nilpotent.
(3) \(A \) is abelian.
(4) \(A \) is a subdirect product of simple abelian algebras.
(5) \(A \) generates an abelian variety.

We have \((4) \Rightarrow (3) \Rightarrow (2) \Rightarrow (1) \) and \((5) \Rightarrow (3) \).
No other implications hold (except the formal consequences).

We prove that stronger abelianness properties yield a closer relationship between various growth-restricting conditions.

Example: Both (5) and (4) imply that the growth rate is non-exponential iff \(A \) has a Maltsev term (in which case the growth rate is linear),
The hierarchy of abelianness properties

(1) \(A\) is solvable.
(2) \(A\) is (left) nilpotent.
(3) \(A\) is abelian.
(4) \(A\) is a subdirect product of simple abelian algebras.
(5) \(A\) generates an abelian variety.

We have \((4) \Rightarrow (3) \Rightarrow (2) \Rightarrow (1)\) and \((5) \Rightarrow (3)\).
No other implications hold (except the formal consequences).

We prove that stronger abelianness properties yield
a closer relationship between various growth-restricting conditions.

Example: Both (5) and (4) imply that
the growth rate is non-exponential iff \(A\) has a Maltsev term
(in which case the growth rate is linear), but (2) does not.
The hierarchy of growth-restricting conditions

(i) A has a Maltsev polynomial.
The hierarchy of growth-restricting conditions

(i) A has a Maltsev polynomial.
(ii) A has a pointed cube polynomial.
The hierarchy of growth-restricting conditions

(i) \(A \) has a Maltsev polynomial.
(ii) \(A \) has a pointed cube polynomial.
(iii) \(A \) is a spread of its type 2 minimal sets (see later).
The hierarchy of growth-restricting conditions

(i) \(A \) has a Maltsev polynomial.
(ii) \(A \) has a pointed cube polynomial.
(iii) \(A \) is a spread of its type 2 minimal sets (see later).
(iv) \(d_A(n) \in O(n) \).
The hierarchy of growth-restricting conditions

(i) A has a Maltsev polynomial.
(ii) A has a pointed cube polynomial.
(iii) A is a spread of its type 2 minimal sets (see later).
(iv) $d_A(n) \in O(n)$.
(v) $d_A(n) \notin 2\Omega(n)$.
The hierarchy of growth-restricting conditions

(i) \(A \) has a Maltsev polynomial.

(ii) \(A \) has a pointed cube polynomial.

(iii) \(A \) is a spread of its type 2 minimal sets (see later).

(iv) \(d_A(n) \in O(n) \).

(v) \(d_A(n) \notin 2\Omega(n) \).

(vi) \(A^n \) has no nontrivial strongly abelian factor (for all \(n \)).
The hierarchy of growth-restricting conditions

(i) \mathbf{A} has a Maltsev polynomial.
(ii) \mathbf{A} has a pointed cube polynomial.
(iii) \mathbf{A} is a spread of its type 2 minimal sets (see later).
(iv) $d_\mathbf{A}(n) \in O(n)$.
(v) $d_\mathbf{A}(n) \notin 2^{\Omega(n)}$.
(vi) \mathbf{A}^n has no nontrivial strongly abelian factor (for all n).

We have (i)\Rightarrow(iv),
The hierarchy of growth-restricting conditions

(i) A has a Maltsev polynomial.

(ii) A has a pointed cube polynomial.

(iii) A is a spread of its type 2 minimal sets (see later).

(iv) $d_A(n) \in O(n)$.

(v) $d_A(n) \notin 2\Omega(n)$.

(vi) A^n has no nontrivial strongly abelian factor (for all n).

We have (i)\Rightarrow(iv), (i)\Rightarrow(ii)\Rightarrow(v),
The hierarchy of growth-restricting conditions

(i) A has a Maltsev polynomial.
(ii) A has a pointed cube polynomial.
(iii) A is a spread of its type 2 minimal sets (see later).
(iv) $d_A(n) \in O(n)$.
(v) $d_A(n) \notin 2 \Omega(n)$.
(vi) A^n has no nontrivial strongly abelian factor (for all n).

We have (i)\Rightarrow(iv), (i)\Rightarrow(ii)\Rightarrow(v), and (iii)\Rightarrow(iv)\Rightarrow(v)\Rightarrow(vi).
The hierarchy of growth-restricting conditions

(i) \(A \) has a Maltsev polynomial.
(ii) \(A \) has a pointed cube polynomial.
(iii) \(A \) is a spread of its type 2 minimal sets (see later).
(iv) \(d_A(n) \in O(n) \).
(v) \(d_A(n) \notin 2\Omega(n) \).
(vi) \(A^n \) has no nontrivial strongly abelian factor (for all \(n \)).

We have (i) \(\Rightarrow \) (iv), (i) \(\Rightarrow \) (ii) \(\Rightarrow \) (v), and (iii) \(\Rightarrow \) (iv) \(\Rightarrow \) (v) \(\Rightarrow \) (vi).
No other implications hold for general finite algebras.
The hierarchy of growth-restricting conditions

(i) \(A \) has a Maltsev polynomial.
(ii) \(A \) has a pointed cube polynomial.
(iii) \(A \) is a spread of its type 2 minimal sets (see later).
(iv) \(d_A(n) \in O(n) \).
(v) \(d_A(n) \notin 2\Omega(n) \).
(vi) \(A^n \) has no nontrivial strongly abelian factor (for all \(n \)).

We have (i) \(\Rightarrow \) (iv), (i) \(\Rightarrow \) (ii) \(\Rightarrow \) (v), and (iii) \(\Rightarrow \) (iv) \(\Rightarrow \) (v) \(\Rightarrow \) (vi).
No other implications hold for general finite algebras.

Open problem
Is the growth rate of each finite solvable \(A \) linear or exponential?
The hierarchy of growth-restricting conditions

(i) \(A \) has a Maltsev polynomial.

(ii) \(A \) has a pointed cube polynomial.

(iii) \(A \) is a spread of its type 2 minimal sets (see later).

(iv) \(d_A(n) \in O(n) \).

(v) \(d_A(n) \notin 2\Omega(n) \).

(vi) \(A^n \) has no nontrivial strongly abelian factor (for all \(n \)).

We have (i)\(\Rightarrow \) (iv), (i)\(\Rightarrow \) (ii)\(\Rightarrow \) (v), and (iii)\(\Rightarrow \) (iv)\(\Rightarrow \) (v)\(\Rightarrow \) (vi).

No other implications hold for general finite algebras.

Open problem

Is the growth rate of each finite solvable \(A \) linear or exponential?

True if \(A \) is nilpotent;
The hierarchy of growth-restricting conditions

(i) \(A \) has a Maltsev polynomial.
(ii) \(A \) has a pointed cube polynomial.
(iii) \(A \) is a spread of its type 2 minimal sets (see later).
(iv) \(d_A(n) \in O(n) \).
(v) \(d_A(n) \notin 2\Omega(n) \).
(vi) \(A^n \) has no nontrivial strongly abelian factor (for all \(n \)).

We have (i) \(\Rightarrow \) (iv), (i) \(\Rightarrow \) (ii) \(\Rightarrow \) (v), and (iii) \(\Rightarrow \) (iv) \(\Rightarrow \) (v) \(\Rightarrow \) (vi). No other implications hold for general finite algebras.

Open problem

Is the growth rate of each finite solvable \(A \) linear or exponential?

True if \(A \) is nilpotent; would follow from (vi) \(\Rightarrow \) (iii) for solvable \(A \).
Spreads

Definition

Let A be an algebra and U a collection of subsets of A.
Spreads

Definition

Let A be an algebra and U a collection of subsets of A. A subset $S \subseteq A$ is a spread with respect to U if there exists a polynomial p of A.
Spreads

Definition

Let A be an algebra and U a collection of subsets of A. A subset $S \subseteq A$ is a spread with respect to U if there exists a polynomial p of A and (not necessarily distinct) elements $U_1, \ldots, U_k \in U$.
Spreads

Definition

Let A be an algebra and U a collection of subsets of A. A subset $S \subseteq A$ is a spread with respect to U if there exists a polynomial p of A and (not necessarily distinct) elements $U_1, \ldots, U_k \in U$ such that $p(U_1, \ldots, U_k) = S$.
Spreads

Definition

Let A be an algebra and U a collection of subsets of A. A subset $S \subseteq A$ is a spread with respect to U if there exists a polynomial p of A and (not necessarily distinct) elements $U_1, \ldots, U_k \in U$ such that $p(U_1, \ldots, U_k) = S$.

Claim

If a finite algebra A is a spread of a family of subsets on which the induced algebras have Maltsev polynomials
Spreads

Definition

Let A be an algebra and \mathcal{U} a collection of subsets of A. A subset $S \subseteq A$ is a **spread** with respect to \mathcal{U} if there exists a polynomial p of A and (not necessarily distinct) elements $U_1, \ldots, U_k \in \mathcal{U}$ such that $p(U_1, \ldots, U_k) = S$.

Claim

If a finite algebra A is a spread of a family of subsets on which the induced algebras have Maltsev polynomials (like type 2 minimal sets),
Spreads

Definition
Let A be an algebra and U a collection of subsets of A. A subset $S \subseteq A$ is a spread with respect to U if there exists a polynomial p of A and (not necessarily distinct) elements $U_1, \ldots, U_k \in U$ such that $p(U_1, \ldots, U_k) = S$.

Claim
If a finite algebra A is a spread of a family of subsets on which the induced algebras have Maltsev polynomials (like type 2 minimal sets), then the growth rate of A is at most linear.
Spreads

Definition

Let A be an algebra and U a collection of subsets of A. A subset $S \subseteq A$ is a **spread** with respect to U if there exists a polynomial p of A and (not necessarily distinct) elements $U_1, \ldots, U_k \in U$ such that $p(U_1, \ldots, U_k) = S$.

Claim

If a finite algebra A is a spread of a family of subsets on which the induced algebras have Maltsev polynomials (like type 2 minimal sets), then the growth rate of A is at most linear.

Theorem (KKSz)

If A is a finite solvable algebra with a Maltsev polynomial, then A is a spread of its type 2 minimal sets.
Solvable algebras

Theorem (KKSz)

Let A be a finite solvable algebra that has a pointed cube term.
Theorem (KKSz)

Let \mathbf{A} be a finite solvable algebra that has a pointed cube term. Then $d_{\mathbf{A}}(n) = \Theta(n)$.

Solvable algebras

Theorem (KKSz)

Let A be a finite solvable algebra that has a pointed cube term. Then $d_A(n) = \Theta(n)$.

Tool used: a new characterization of solvability.
Solvable algebras

Theorem (KKSz)

Let \mathbf{A} be a finite solvable algebra that has a pointed cube term. Then $d_{\mathbf{A}}(n) = \Theta(n)$.

Tool used: a new characterization of solvability.

Let \mathbf{A} be an algebra and p an idempotent polynomial of \mathbf{A}.
Solvable algebras

Theorem (KKSz)

Let A be a finite solvable algebra that has a pointed cube term. Then $d_A(n) = \Theta(n)$.

Tool used: a new characterization of solvability.

Let A be an algebra and p an idempotent polynomial of A. The translation-digraph $\text{Tr}(p)$ on A has directed edges $(c, c') = (p(c, c, \ldots, c), p(c, \ldots, c, d, c, \ldots, c))$,
Solvable algebras

Theorem (KKSz)

Let A be a finite solvable algebra that has a pointed cube term. Then $d_A(n) = \Theta(n)$.

Tool used: a new characterization of solvability.

Let A be an algebra and p an idempotent polynomial of A. The translation-digraph $\text{Tr}(p)$ on A has directed edges $(c, c') = (p(c, c, \ldots, c), p(c, \ldots, c, d, c, \ldots, c))$, where $c, d \in A$.
Solvable algebras

Theorem (KKSz)

Let A be a finite solvable algebra that has a pointed cube term. Then $d_A(n) = \Theta(n)$.

Tool used: a new characterization of solvability.

Let A be an algebra and p an idempotent polynomial of A. The translation-digraph $\mathbf{Tr}(p)$ on A has directed edges $(c, c') = (p(c, c, \ldots, c), p(c, \ldots, c, d, c, \ldots, c))$, where $c, d \in A$.

Theorem (KKSz)

A finite algebra A is solvable if and only if for every neighborhood U of A,
Solvable algebras

Theorem (KKSz)

Let \(A \) be a finite solvable algebra that has a pointed cube term. Then \(d_A(n) = \Theta(n) \).

Tool used: a new characterization of solvability.

Let \(A \) be an algebra and \(p \) an idempotent polynomial of \(A \). The translation-digraph \(\text{Tr}(p) \) on \(A \) has directed edges
\[
(c, c') = (p(c, c, \ldots, c), p(c, \ldots, c, d, c, \ldots, c)), \quad \text{where} \quad c, d \in A.
\]

Theorem (KKSz)

A finite algebra \(A \) is solvable if and only if for every neighborhood \(U \) of \(A \), and every idempotent polynomial \(p \) of the induced algebra \(A|_U \),
Solvable algebras

Theorem (KKSz)

Let \(A \) be a finite solvable algebra that has a pointed cube term. Then \(d_A(n) = \Theta(n) \).

Tool used: a new characterization of solvability.

Let \(A \) be an algebra and \(p \) an idempotent polynomial of \(A \). The translation-digraph \(\text{Tr}(p) \) on \(A \) has directed edges \((c, c') = (p(c, c, \ldots, c), p(c, \ldots, c, d, c, \ldots, c))\), where \(c, d \in A \).

Theorem (KKSz)

A finite algebra \(A \) is solvable if and only if for every neighborhood \(U \) of \(A \), and every idempotent polynomial \(p \) of the induced algebra \(A|_U \), the directed graph \(\text{Tr}(p) \) is strongly connected.
Nilpotent algebras

Theorem (KKSz)

A finite left nilpotent algebra has a Maltsev polynomial iff it has a pointed cube polynomial.
Nilpotent algebras

Theorem (KKSz)

A finite left nilpotent algebra has a Maltsev polynomial iff it has a pointed cube polynomial. Hence a finite abelian algebra has a pointed cube polynomial iff it is affine.
Nilpotent algebras

Theorem (KKSz)

A finite left nilpotent algebra has a Maltsev polynomial iff it has a pointed cube polynomial. Hence a finite abelian algebra has a pointed cube polynomial iff it is affine (so has a Maltsev-term).
Nilpotent algebras

Theorem (KKSz)

A finite left nilpotent algebra has a Maltsev polynomial iff it has a pointed cube polynomial. Hence a finite abelian algebra has a pointed cube polynomial iff it is affine (so has a Maltsev-term).

Theorem (KKSz)

If A is a finite, left nilpotent algebra, and $A^{|A|}$ does not have a nontrivial strongly abelian quotient algebra,
Nilpotent algebras

Theorem (KKSz)

A finite left nilpotent algebra has a Maltsev polynomial iff it has a pointed cube polynomial. Hence a finite abelian algebra has a pointed cube polynomial iff it is affine (so has a Maltsev-term).

Theorem (KKSz)

If A is a finite, left nilpotent algebra, and $A^{\{|A|\}}$ does not have a nontrivial strongly abelian quotient algebra, then A is a spread of its type 2 minimal sets.
Nilpotent algebras

Theorem (KKSz)

A finite left nilpotent algebra has a Maltsev polynomial iff it has a pointed cube polynomial. Hence a finite abelian algebra has a pointed cube polynomial iff it is affine (so has a Maltsev-term).

Theorem (KKSz)

If A is a finite, left nilpotent algebra, and $A^{[A]}$ does not have a nontrivial strongly abelian quotient algebra, then A is a spread of its type 2 minimal sets (hence linear).
Nilpotent algebras

Theorem (KKSz)
A finite left nilpotent algebra has a Maltsev polynomial iff it has a pointed cube polynomial. Hence a finite abelian algebra has a pointed cube polynomial iff it is affine (so has a Maltsev-term).

Theorem (KKSz)
If A is a finite, left nilpotent algebra, and $A^{|A|}$ does not have a nontrivial strongly abelian quotient algebra, then A is a spread of its type 2 minimal sets (hence linear).

The proof uses the quasi-Hamiltonian property for the subalgebras of $A^{|A|}$.
Abelian varieties

Theorem (KKSz)

Let A be an algebra, which is a spread of subsets whose induced algebras are affine. Then the following hold.
Abelian varieties

Theorem (KKSz)

Let \(A \) be an algebra, which is a spread of subsets whose induced algebras are affine. Then the following hold.

- If \(H(A^2) \) is abelian, then there is an abelian group operation on \(A \) that is compatible with all operations of \(A \),
Abelian varieties

Theorem (KKSz)

Let A be an algebra, which is a spread of subsets whose induced algebras are affine. Then the following hold.

- If $H(A^2)$ is abelian, then there is an abelian group operation on A that is compatible with all operations of A, and preserves all congruences of A.

Abelian varieties

Theorem (KKSz)

Let A be an algebra, which is a spread of subsets whose induced algebras are affine. Then the following hold.

- If $H(A^2)$ is abelian, then there is an abelian group operation on A that is compatible with all operations of A, and preserves all congruences of A.
- If the variety $V(A)$ generated by A is abelian, then A is affine.
Abelian varieties

Theorem (KKSz)

Let A be an algebra, which is a spread of subsets whose induced algebras are affine. Then the following hold.

- If $H(A^2)$ is abelian, then there is an abelian group operation on A that is compatible with all operations of A, and preserves all congruences of A.
- If the variety $V(A)$ generated by A is abelian, then A is affine.

Examples

An 8-element quasi-affine algebra shows that in the second statement the assumption that $V(A)$ is abelian cannot be dropped.
Abelian varieties

Theorem (KKSz)

Let A be an algebra, which is a spread of subsets whose induced algebras are affine. Then the following hold.

- If $H(A^2)$ is abelian, then there is an abelian group operation on A that is compatible with all operations of A, and preserves all congruences of A.
- If the variety $V(A)$ generated by A is abelian, then A is affine.

Examples

An 8-element quasi-affine algebra shows that in the second statement the assumption that $V(A)$ is abelian cannot be dropped.

Another 8-element abelian algebra shows that in the first statement it is not sufficient to assume only that $H(A)$ is abelian.
Semisimple algebras

Theorem (KKSz)

Let A be a finite solvable algebra and β the intersection of all maximal congruences of A.
Semisimple algebras

Theorem (KKSz)

Let A be a finite solvable algebra and β the intersection of all maximal congruences of A. If the growth rate of A/β is linear, then A/β has a Maltsev polynomial.
Semisimple algebras

Theorem (KKSz)

Let A be a finite solvable algebra and β the intersection of all maximal congruences of A. If the growth rate of A/β is linear, then A/β has a Maltsev polynomial. In particular, if A is (linear, and) a direct product of simple abelian algebras, then A is Maltsev.
Semisimple algebras

Theorem (KKSz)

Let A be a finite solvable algebra and β the intersection of all maximal congruences of A. If the growth rate of A/β is linear, then A/β has a Maltsev polynomial. In particular, if A is (linear, and) a direct product of simple abelian algebras, then A is Maltsev.

The proof shows that A/β is a direct product, and not just a subdirect product of simple abelian algebras.
Semisimple algebras

Theorem (KKSz)

Let A be a finite solvable algebra and β the intersection of all maximal congruences of A. If the growth rate of A/β is linear, then A/β has a Maltsev polynomial. In particular, if A is (linear, and) a direct product of simple abelian algebras, then A is Maltsev.

The proof shows that A/β is a direct product, and not just a subdirect product of simple abelian algebras.

Example

There exist a 16-element algebra that is a direct product of two, 4-element affine (hence abelian, Maltsev) algebras,
Semisimple algebras

Theorem (KKSz)

Let \(A \) be a finite solvable algebra and \(\beta \) the intersection of all maximal congruences of \(A \). If the growth rate of \(A/\beta \) is linear, then \(A/\beta \) has a Maltsev polynomial. In particular, if \(A \) is (linear, and) a direct product of simple abelian algebras, then \(A \) is Maltsev.

The proof shows that \(A/\beta \) is a direct product, and not just a subdirect product of simple abelian algebras.

Example

There exist a 16-element algebra that is a direct product of two, 4-element affine (hence abelian, Maltsev) algebras, has a linear growth rate,
Semisimple algebras

Theorem (KKSz)

Let A be a finite solvable algebra and β the intersection of all maximal congruences of A. If the growth rate of A/β is linear, then A/β has a Maltsev polynomial. In particular, if A is (linear, and) a direct product of simple abelian algebras, then A is Maltsev.

The proof shows that A/β is a direct product, and not just a subdirect product of simple abelian algebras.

Example

There exist a 16-element algebra that is a direct product of two, 4-element affine (hence abelian, Maltsev) algebras, has a linear growth rate, but does not have a Maltsev polynomial.
Summary: arbitrary

(i) \(A \) has a Maltsev polynomial.
(ii) \(A \) has a pointed cube polynomial.
(iii) \(A \) is a spread of its type 2 minimal sets.
(iv) \(d_A(n) \in O(n) \).
(v) \(d_A(n) \notin 2^{\Omega(n)} \).
(vi) \(A^n \) has no nontrivial strongly abelian factor (for all \(n \)).

All are equivalent if \(A \) is semisimple or if \(V(A) \) is abelian.

\[(i) \implies (ii) \]
\[
\downarrow \quad \downarrow
\]
\[
(iii) \implies (iv) \implies (v) \implies (vi).
\]

For arbitrary finite algebras
Summary: solvable

(i) A has a Maltsev polynomial.
(ii) A has a pointed cube polynomial.
(iii) A is a spread of its type 2 minimal sets.
(iv) $d_A(n) \in O(n)$.
(v) $d_A(n) \notin 2\Omega(n)$.
(vi) A^n has no nontrivial strongly abelian factor (for all n).

All are equivalent if A is semisimple or if $V(A)$ is abelian.

$(i) \implies (ii)$

$(iii) \iff (iv) \iff (v) \implies (vi)$.

For finite, solvable algebras
Summary: nilpotent

(i) A has a Maltsev polynomial.
(ii) A has a pointed cube polynomial.
(iii) A is a spread of its type 2 minimal sets.
(iv) $d_A(n) \in O(n)$.
(v) $d_A(n) \notin 2\Omega(n)$.
(vi) A^n has no nontrivial strongly abelian factor (for all n).

All are equivalent if A is semisimple or if $V(A)$ is abelian.

$(i) \iff (ii)$

$(iii) \iff (iv) \iff (v) \iff (vi)$.

For finite, left nilpotent algebras
Open problems

Is there a finite algebra A such that $d_A(n) \notin \Omega(n)$ and $d_A(n) \notin O(\log(n))$? That is, whose growth rate is between logarithmic and linear?
Open problems

Is there a finite algebra A such that $d_A(n) \notin \Omega(n)$ and $d_A(n) \notin O(\log(n))$? That is, whose growth rate is between logarithmic and linear? Open for 2-element partial algebras, too.
Open problems

Is there a finite algebra A such that $d_A(n) \notin \Omega(n)$ and $d_A(n) \notin O(\log(n))$? That is, whose growth rate is between logarithmic and linear? Open for 2-element partial algebras, too.

Is it true that a finite algebra with a 2-sided unit for some binary term has logarithmic or linear growth?
Open problems

Is there a finite algebra A such that $d_A(n) \notin \Omega(n)$ and $d_A(n) \notin O(\log(n))$? That is, whose growth rate is between logarithmic and linear? Open for 2-element partial algebras, too.

Is it true that a finite algebra with a 2-sided unit for some binary term has logarithmic or linear growth? (Note that the identities $x \ast 1 = 1 \ast x = x$ show that \ast is a 1-pointed 2-cube term.)
Open problems

Is there a finite algebra A such that $d_A(n) \notin \Omega(n)$ and $d_A(n) \notin O(\log(n))$? That is, whose growth rate is between logarithmic and linear? Open for 2-element partial algebras, too.

Is it true that a finite algebra with a 2-sided unit for some binary term has logarithmic or linear growth? (Note that the identities $x * 1 = 1 * x = x$ show that $*$ is a 1-pointed 2-cube term.)

Does (ii)\Rightarrow(iii) hold for finite solvable algebras?
Open problems

Is there a finite algebra A such that $d_A(n) \not\in \Omega(n)$ and $d_A(n) \not\in O(\log(n))$? That is, whose growth rate is between logarithmic and linear? Open for 2-element partial algebras, too.

Is it true that a finite algebra with a 2-sided unit for some binary term has logarithmic or linear growth? (Note that the identities $x \ast 1 = 1 \ast x = x$ show that \ast is a 1-pointed 2-cube term.)

Does (ii) \Rightarrow (iii) hold for finite solvable algebras?

Which of the true implications (iii) \Rightarrow (iv) \Rightarrow (v) \Rightarrow (vi) can be reversed for finite solvable algebras?
Open problems

Is there a finite algebra \(A \) such that \(d_A(n) \notin \Omega(n) \) and \(d_A(n) \notin O(\log(n)) \)? That is, whose growth rate is between logarithmic and linear? Open for 2-element partial algebras, too.

Is it true that a finite algebra with a 2-sided unit for some binary term has logarithmic or linear growth? (Note that the identities \(x \star 1 = 1 \star x = x \) show that \(\star \) is a 1-pointed 2-cube term.)

Does (ii) \(\Rightarrow \) (iii) hold for finite solvable algebras?

Which of the true implications (iii) \(\Rightarrow \) (iv) \(\Rightarrow \) (v) \(\Rightarrow \) (vi) can be reversed for finite solvable algebras? In particular, is the growth rate of a finite solvable algebra always linear or exponential?
Literature

Literature

Literature

- KKSz: *Growth rates of algebras I: pointed cube terms*. Arxiv: 1311.2352
Literature

- KKSz: *Growth rates of algebras I: pointed cube terms*. Arxiv: 1311.2352

- KKSz: *Growth rates of algebras II: Wiegold dichotomy*. Arxiv: 1311.6189
Literature

- KKSz: *Growth rates of algebras I: pointed cube terms*. Arxiv: 1311.2352

- KKSz: *Growth rates of algebras II: Wiegold dichotomy*. Arxiv: 1311.6189

- KKSz: *Growth rates of algebras III: Solvable algebras*. Arxiv: 1311.2359
Eötvös University, Faculty of Natural Sciences

Thank you for your attention.