An application of integral quaternions

Bolyai Institute — Szeged, April 1, 2009

Lee M. Goswick, Emil W. Kiss, Gábor Moussong, Nándor Simányi

Icubes

An *icube* (integral cube) is a sequence \((v_1, \ldots, v_k)\) of nonzero vectors in \(\mathbb{Z}^n\) that are pairwise *orthogonal* and have the *same length*. The number \(k\) is the *dimension* of the icube.

The subgroup \(\{ \sum a_i v_i : a_i \in \mathbb{Z} \}\) is a *cubic lattice* in \(\mathbb{Z}^n\).

Terminology: *norm* is length squared, so it is an integer.

Main questions

Construction: describe all icubes with given \(k\) and \(n\).

Counting: how many are there with a given length?

Extension: which ones can be extended (by adding vectors, that is, increasing the dimension)?

In the present work, \(n = 3\) and \(k = 1, 2\). The case \(n = 3\) and \(k = 3\) was known before.

The case \(k = 3\)

Observation

If \((u, v, w)\) is an icube in \(\mathbb{Z}^3\), then the common length \(d\) of \(u, v, w\) is an integer.

Proof

The volume of the cube spanned by \(u, v, w\) is \(d^3\), but it is also \(\det(u, v, w)\), hence \(d^3\) is an integer. But \(d^2\) is also an integer, since \(u, v, w \in \mathbb{Z}^3\). Thus \(d = d^3/d^2\) is rational, hence it is an integer. \(\square\)

Definition

Primitive icube: The \(nk\) components of \(v_1, \ldots, v_k\) are coprime.

It is clearly sufficient to construct all primitive icubes.
The construction of icubes for \(k = 3 \)

Observation (Euler)
For every \(m, n, p, q \in \mathbb{Z} \), the columns of \(E(m, n, p, q) = \\
\begin{pmatrix}
 m^2 + n^2 - p^2 - q^2 & -2mq + 2np & 2mp + 2nq \\
 2mq + 2np & m^2 - n^2 + p^2 - q^2 & -2mn + 2pq \\
 -2mp + 2nq & 2mn + 2pq & m^2 - n^2 - p^2 + q^2 \\
\end{pmatrix}
\)
yield an icube with edge-length \(d = m^2 + n^2 + p^2 + q^2 \).

This is called an Euler-matrix.

Theorem (A. Sárközy, 1961)
This icube is primitive iff \((m, n, p, q) = 1\) and \(d \) is odd. Every primitive icube can be obtained from a suitable Euler-matrix by permuting columns, and by changing the sign of the last column.

Counting icubes for \(k = 3 \)

Corollary (A. Sárközy, 1961)
The number of primitive icubes with edge-length \(d \) is
\[
f(d) = 8d \prod_{p \text{ prime, } p | d} \left(1 + \frac{1}{p} \right)
\]
if \(d \) is odd, and 0 if \(d \) is even. The number of all icubes with edge-length \(d \) is \(\sum_{k | d} f(k) \).

The proof is an application of the following well-known result.

Theorem (Jacobi)
If \(d \) is odd, then the number of solutions of
\[
m^2 + n^2 + p^2 + q^2 = d \quad (m, n, p, q \in \mathbb{Z})
\]
is \(8\sigma(d) \) (here \(\sigma(d) \) is the sum of positive divisors of \(d \)).

Extension from \(k = 1 \) to \(k = 3 \)
Which integral vectors can be put into an icube?

Necessary: The length must be an integer.
Sufficient to deal with primitive vectors.
Answer: All such vectors. We use the description of Pythagorean quadruples.

Theorem (1915 by R. D. Carmichael, may be earlier)
If \(a^2 + b^2 + c^2 = d^2 \), where \((a, b, c) = 1\) and \(a \) is odd, then
\[
a = m^2 + n^2 - p^2 - q^2,
\]
\[
b = 2mq + 2np,
\]
\[
c = -2mp + 2nq,
\]
\[
d = m^2 + n^2 + p^2 + q^2
\]
for some integers \(m, n, p, q \) (the first column of an Euler-matrix).
Extension from \(k = 2 \) to \(k = 3 \)

Short name for \(k = 2 \) and \(n = 3 \)

A twin pair is an ordered pair of vectors in \(\mathbb{Z}^3 \) that are orthogonal and have the same length.

Extension: Which twin pairs can be put into an icube?

Necessary: The length must be an integer.

Answer: All such pairs. Indeed:

Elementary calculation

If \(u \) and \(v \) have length \(d \), then \(w = (u \times v)/d \) (cross product) is also an integral vector.

Idea:

If \(x_1^2 + x_2^2 + x_3^2 = d^2 = y_1^2 + y_2^2 + y_3^2 \) and \(x_1 y_1 + x_2 y_2 + x_3 y_3 = 0 \),
then \(x_3^2 y_3^2 = x_1^2 y_1^2 + x_2^2 y_2^2 + 2 x_1 x_2 y_1 y_2 \), so
\[(x_1 y_2 - x_2 y_1)^2 = (x_1^2 + x_2^2)(y_1^2 + y_2^2) - x_3^2 y_3^2 \] is divisible by \(d^2 \).

Extending primitive vectors to twins

From now on, icube means a 3-dimensional icube in \(\mathbb{Z}^3 \).

Let \(x \in \mathbb{Z}^3 \) whose norm is \(nm^2 \), \(n \) square-free. Then there exists an icube \((u, v, w)\) with edge length \(m \) such that \(x = au + bv + cw \) for some \(a, b, c \in \mathbb{Z} \). Thus the relative norm of \(x \) in this lattice is square-free.

Theorem (GKMS)

If \(x \) is primitive, then this cubic lattice is unique. If \(a, b, c \) are nonzero, then \(x \) does not have a twin. If exactly one of them is zero, then \(x \) has two twins. If two are zero, then \(x \) has four twins, and is contained in exactly four icubes.

Thus if the length of a primitive vector is an integer, then it has 4 twins. Otherwise the number of its twins is 2 or 0.

Constructing twins

Theorem (GKMS)

If \((u, v, w)\) is an icube and \(a, b \in \mathbb{Z} \), then \((aw + bw, -bv + aw)\) is a twin pair. We get all twin pairs this way. In particular, the norm of twins is the sum of two squares.

Problem: this decomposition is not unique.

Bad example

3\((8, -10, 9)\) and 7\((4, 5, 2)\) are twins. Neither of them is primitive (this is the main problem). The “right” cubic lattice for them is given by \(E(0, 2, 1, 4) \), that is \(u = (-13, 4, 16), v = (4, -19, 8), w = (16, 8, 11) \) with \(a = 2 \) and \(b = 1 \).

How to “foresee” the “divisors” of a non-primitive \(au + bv + cw \)?
Counting twins

Theorem (GKMS)
Denote by \(T(M) \) the number of twin pairs whose norm (length squared) is \(M \). Suppose that
\[
M = 2^k p_1^{\lambda_1} \cdots p_m^{\lambda_m} q_1^{\mu_1} \cdots q_{\ell}^{\mu_{\ell}} \quad (p_r \equiv 1 \, (4), q_s \equiv -1 \, (4))
\]
(where \(p_r \) and \(q_s \) are primes and \(\lambda_r, \mu_s > 0 \)), then
\[
T(M) = 24 \prod_{r=1}^{m} g(p_r^{2\lambda_r}) \prod_{s=1}^{\ell} h(q_s^{2\mu_s}),
\]
where
\[
g(p^{2\lambda}) = \sigma(p^{\lambda}) + \sigma(p^{\lambda-1}), \quad g(p^{2\lambda+1}) = 2\sigma(p^{\lambda}),
\]
\[
h(q^{2\mu}) = \sigma(q^{\mu}) + \sigma(q^{\mu-1}), \quad h(q^{2\mu+1}) = 0.
\]
In particular, \(T(M)/24 \) is a multiplicative function.

Proof: using integral quaternions.

Geometry and quaternions

Well-known in geometry
Identify \((x_1, x_2, x_3) \in \mathbb{R}^3\) and the pure quaternion \(x_1 i + x_2 j + x_3 k\).
Let \(\alpha = m + ni + pj + qk \) with \(N(\alpha) = m^2 + n^2 + p^2 + q^2 = 1 \),
and for \(\theta = x_1 i + x_2 j + x_3 k \) let \(E(\alpha) : \theta \mapsto \alpha\theta\alpha^{-1}(= \alpha\theta\overline{\alpha}) \).
Then \(E(\alpha) \) yields a rotation of \(\mathbb{R}^3 \) whose matrix is \(E(m, n, p, q) \).
Conversely, every rotation (element of the group \(\text{SO}(\mathbb{R}^3) \)) can be obtained in such a way, and \(\alpha \) is unique up to sign.

Example
Let \(\alpha = 2i + j + 4k \), its norm is 21. Then \(\theta \mapsto \alpha\theta\overline{\alpha} \) is a dilated rotation.
It transforms the “planar” twin pair \((2j + k, -j + 2k) \) (norm 5)
to the twin pair \((24i - 30j + 27k, 28i + 35j + 14k) \) (norm \(21^2 \cdot 5 \)).

Hurwitz integral quaternions

Well-known in algebra
Let \(\mathbb{E} \) denote the ring of Hurwitz-quaternions, that is,
quaternions \(a + bi + cj + dk \) such that \(a, b, c, d \) are either all integers, or all of them is
the half of an odd integer.
Then \(\mathbb{E} \) has “unique” factorization (it is right Euclidean).
\(\mathbb{E} \) has 24 units \(\sigma = (1 + i + j + k)/2 \) is one.
The irreducible elements of \(\mathbb{E} \) are the ones with prime norm.
There are \(24(p+1) \) such elements whose norm is \(p > 2 \), and the elements with norm 2
are the 24 associates of \(1 + i \).
It is usually sufficient to use the following for uniqueness:
If a prime \(p \) divides \(N(\alpha) \) but does not divide \(\alpha \), then \(\alpha = \pi\alpha' \) for some \(\pi \) with norm \(p \),
and \(\pi \) is unique up to right association.
Decomposing single vectors
Every pure quaternion \(\theta \in E \) can be written as \(\alpha \beta \overline{\alpha} \), where \(N(\beta) \) is the square-free part of \(N(\theta) \) (and \(\alpha \in E \)). If \(\theta \) is primitive, then \(\alpha \) is unique up to right associates.

Lemma (GKMS)
If \(\alpha \beta \overline{\alpha} \) is divisible by an odd prime \(p \), but \(\alpha \) and \(\beta \) is not, then \(p \mid N(\alpha) \), and there is an integer \(h \) and a right divisor \(\pi \) of \(\alpha \) such that \(N(\pi) = p \) and \(\pi \mid h + \beta \).

Let \(s(M) \) denote the number of vectors with norm \(M \). This lemma reduces its computation to the square-free case.

Corollary used for twin-completeness later
For every primitive pure \(\beta \in E \) and \(m > 0 \) there is an \(\alpha \in E \) with norm \(m \) such that \(\alpha \beta \overline{\alpha} \) is primitive.

Constructing twin pairs
For \(u, v \in \mathbb{Z}^3 \) let \(\theta, \eta \) be the corresponding pure quaternions.
Then \(u \perp v \) iff \(\theta \eta \) is also a pure quaternion.
Let \(\alpha \in E \) and \(z \in \mathbb{G} \) (Gaussian integers). Then \(\theta = \alpha z j \overline{\alpha} \) and \(\eta = \alpha z k \overline{\alpha} \) are obviously twins.
We say that \((\theta, \eta)\) is parameterized by \((\alpha, z) \in E \times \mathbb{G}\).

Theorem (GKMS)
Each twin pair is parametrized by some pair in \(E \times \mathbb{G} \), where the second component is square-free in \(\mathbb{G} \).
Such \((\alpha_1, z_1), (\alpha_2, z_2) \in E \times \mathbb{G} \) yield the same twin iff there exists a unit \(\rho \in \mathbb{G} \) (that is, an element of \(\{ \pm 1, \pm i \} \)) such that \(\alpha_2 = \alpha_1 \rho \) and \(z_1 = \rho^2 z_2 \).
We get an icube exactly when \(z \) is real or pure imaginary.

Twin-complete numbers
Recall
A vector can be put into an icube iff its norm is a square.

Extension: Which non-primitive vectors have a twin?

Necessary: The norm must be the sum of two squares.

Easier Problem
Characterize those numbers \(M \) such that every integral vector of norm \(M \) has a twin.

Exclude those \(M \) for which there is no vector of norm \(M \) (that is, numbers \(M \) of the form \(4^n(8k + 7) \)).
Such numbers \(M \) are called twin-complete.
Characterizing twin-completeness

Theorem (GKMS)
A positive integer is twin-complete if and only if its square-free part can be written as a sum of two squares, but not as a sum of three \emph{positive} squares.

The proof uses the machinery built above.

Famous conjecture in number theory
The complete list of positive square-free integers that can be written as a sum of two squares, but not as a sum of three \emph{positive} squares, is the following:

\begin{itemize}
 \item 1
 \item 2
 \item 5
 \item 10
 \item 13
 \item 37
 \item 58
 \item 85
 \item 130
\end{itemize}

If true, then \(d^2, 2d^2, 5d^2, 10d^2, 13d^2, 37d^2, 58d^2, 85d^2, 130d^2\) are exactly the twin-complete numbers.

\textbf{Euler’s numeri idonei}

Euler defined a \textit{numerus idoneus} to be an integer \(n\) such that, for any positive integer \(m\), if \(m = x^2 + ny^2, (x^2, ny^2) = 1, x, y \geq 0\) has a unique solution, then \(m\) is a prime power, or twice a prime power.

\textbf{Euler’s conjecture}: his list of 65 \textit{numeri idonei} is complete.

Every number in the conjecture above is a \textit{numerus idoneus}.

Relationship: positive solutions of \(xy + xz + yz = n\).

\textbf{S. Chowla}: there are only \textit{finitely many numeri idonei}.

\textbf{P. J. Weinberger}: \textit{At most one square-free number can be missing} from Euler’s list, and it is greater than \(2 \cdot 10^{11}\) (the largest number on Euler’s list is 1848).

If the Generalized Riemann Hypothesis holds, then the possible missing tenth number on the twin-complete list is odd.

\textbf{Problems in higher dimensions}

\textit{Study construction, counting, extension for general cubes}.

\textbf{Obvious}: In even dimensions \(n\), every vector has a twin.

So suppose that the dimension is odd. What are the possible norms of twins? What about twin-completeness?

Call a vector \textit{odd}, if each of its components is odd.

\textbf{Obvious}: In odd dimensions, odd vectors cannot have a twin.

\textbf{Conjecture (may be easy!)}

Suppose that the dimension \(n \geq 5\) is odd. Then every non-odd vector has a twin.

\textbf{Obvious}: Every odd vector of norm \(M\) satisfies that \(M \equiv n \ (8)\).

\textbf{Weaker conjecture}

Suppose that the dimension \(n \geq 5\) is odd and \(M \not\equiv n \ (8)\). Then every vector of norm \(M\) has a twin.