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Abstract

The aim of this paper is twofold. First some machinery is established to reveal the

structure of abelian congruences. Then we describe all minimal, locally �nite, locally

solvable varieties. For locally solvable varieties, this solves problems 9 and 10 of Hobby

and McKenzie, [6]. We generalize part of this result by proving that all locally �nite

varieties generated by nilpotent algebras that have a trivial locally strongly solvable

subvariety are congruence permutable.

1 Introduction

This paper is an outgrowth of our study of locally solvable locally �nite varieties. Our

purpose is to describe tools that have been developed to better deal with �nite solvable

algebras. We refer to these tools as \coordinatization theory" and \the theory of minimal

sets in subdirect powers". Although these tools were originally developed to deal with solvable

algebras, we present them in greater generality here. After spending the early sections of this

paper building theory, we then present one of the �rstfruits of coordinatization theory: we

characterize the locally �nite minimal varieties generated by an abelian algebra.

In Section 2 we present all technical results on centrality and type 2 minimal sets that

we use later. There are some new observations here, too, like Theorem 2.12 and its corollary.

Our �rst section devoted to theory building is Section 3. In this section we describe

coordinatization results. We approach the subject in a general way, explaining how a subset

of an algebra may be coordinatizable by E{traces, but we quickly get to the most interesting

case: we consider when a subset of an algebra is coordinatizable by traces. Such a subset

might be called a \higher dimensional trace". We analyze the algebra induced on a coordin-

atizable subset of an �{class where � is a minimal congruence on a �nite algebra A and

typ(0

A

; �) 2 f1 ;2 ;3 g. We now describe what this means and why it is interesting. To

minimize the prerequisites for this discussion we assume that A is a �nite simple algebra. In

this setting, � = 1

A

and minimal sets and traces are the same thing. We will use the word

\trace" in the next few paragraphs since that is the accurate choice when looking at algebras

which are not simple.

�
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The fundamental concept of tame congruence theory is that an algebra can be locally ap-

proximated by induced algebras. One proceeds as follows. Choose a nonconstant idempotent

unary polynomial e of A with minimal range. Let N = e(A). Then N is a h0; 1i{minimal

set of A and also a h0; 1i{trace. De�ne Aj

N

to be the algebra whose universe is N and

whose basic operations are the polynomials of A under which N is closed. These are the

f 2 Pol(A) such that f(N

k

) � N . What makes this a powerful approach to the study of

�nite algebras can be summarized by four words: Isomorphism, Density, Separation and

Classi�cation. The word Isomorphism refers to the fact that, up to polynomial equivalence,

the algebra Aj

N

is independent of the choice of e. Hence, the polynomial equivalence class

of Aj

N

is an invariant of A. The word Density refers to the fact that any two elements of A

can be connected by a chain of overlapping traces. The word Separation re
ects the fact

that if a; b 2 A are distinct, then there is a polynomial p 2 Pol

1

(A) such that p(A) = N and

p(a) 6= p(b). The word Classi�cation refers to the fact that, up to polynomial equivalence,

the structure of Aj

N

is known. Namely, Aj

N

is one of the following algebras:

1 : a simple G{set (for a group G),

2 : a 1{dimensional vector space,

3 : a 2{element Boolean algebra,

4 : a 2{element lattice or

5 : a 2{element semilattice.

The number 1 { 5 is called the type of Aj

N

and also the type of A.

When a �nite algebra A o�ers a puzzle, analysis of the puzzle often can be reduced to

the consideration of a certain \con�guration" of elements and operations. We do not intend

to de�ne \con�guration" here, but roughly what we mean by this term is a set of �rst order

sentences in the language of A

A

which are either atomic or negated atomic. Now, one can

use separation to map any con�guration of A into N in a way that preserves at least one

negated atomic sentence. This transforms the puzzle about A into a related puzzle about

the induced algebra Aj

N

. Because of the isomorphism between induced algebras it doesn't

matter which you choose. Using the classi�cation of induced algebras, one solves the puzzle

\locally". Then one uses density to transfer the solution back to the original algebra. Of

course, the success of this strategy depends on how closely A is approximated by its induced

algebras.

In Figure 1 we have indicated what might be called the \geometry" of an 8{element simple

algebra A. The black dots represent elements of A. These are the \points" of the geometry.

The set N = f0; 1g is one of the ten traces of A. The traces are the \lines" of the geometry.

It would be highly desirable to understand how all the operations of A compose, but tame

congruence theory won't tell us that much; the theory only tells us what is happening \on a

line". That is, if p 2 Pol

k

(A) and p(N

k

) � N , then pj

N

2 Pol

k

(Aj

N

). If, for example, A is

of type 2 , then pj

N

is a vector space polynomial. This tells us that a fragment of the Cayley

table for p is described by an operation on N of the form a

1

x

1

+ � � �+a

k

x

k

. Tame congruence

theory does not tell us more about the Cayley table of p nor does it tell us anything about

other polynomials q 2 Pol

m

(A) unless it happens that q(N

m

) � N (or at the very least one

must have q(N

1

� � � � �N

m

) � N

0

where all N

i

are traces).
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Figure 1: The geometry of A.

In Section 3 we go a step further. We show that often there are subsets T � A larger than

a trace which share the basic properties of traces and which may be thought of as higher

dimensional traces. The sets we consider are those subsets of A of the form T = f(N; : : : ;N)

where N is a trace and f 2 Pol(A). We call these sets multitraces. In Figure 2 there are two

multitraces which are not just traces.
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Figure 2: Multitraces T and T

0

.

The multitrace T might be thought of as a \hyperplane" of the geometry. A classi�cation

of algebras of the form Aj

T

, where T is a multitrace, would tell us what is happening on a

hyperplane rather than just what is happening on a line. The structure of Aj

T

when A is

abelian follows fairly directly from coordinatization theory. We are also able to determine

the structure of Aj

T

when A has type 3 . Unfortunately, the notion of a multitrace is not

well{behaved in types 4 and 5 .

The class of multitraces of our simple algebra A contains the traces, so we still have the

properties of separation and density with respect to multitraces. In Section 3, we classify

the algebra induced on a multitrace for types 1 , 2 and 3 . With respect to the isomorphism
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property which traces enjoy, it is not true that any two multitraces are polynomially iso-

morphic. However, any polynomial image of a multitrace is again a multitrace and, in types

1 , 2 and 3 , the structure A induces on a multitrace is determined up to polynomial equi-

valence by the cardinality of the multitrace. These two properties may serve as substitutes

for the isomorphism property of traces.

It turns out that there is another realization of the intuitive notion of a higher dimensional

trace which works well in all types. This new notion, called a generalized trace, will be

developed in a subsequent paper. Here we will only say that the de�nition of a generalized

trace is a little more complicated than that of a multitrace, but in types 1 , 2 , and 3 these

concepts coincide.

Section 4 is our other section devoted to theory building. In this section we investigate

minimal sets in subdirect powers. Generally, our goal is to better understand the connection

between local and global properties in a locally �nite variety. Speci�cally, our goal is to

analyze the relationship between minimal sets in A and minimal sets in an arbitrarily chosen

�nite algebra B 2 V(A). This seems to be a di�cult problem. For example, say that a

�nite algebra satis�es the empty tails condition if all of its minimal sets have empty tail.

It is known (see [11]) that a locally �nite variety is congruence modular if and only if all

�nite members satisfy the empty tails condition. The empty tails condition is not su�cient

(nor necessary) to prove congruence modularity for a single algebra; but the empty tails

condition for every �nite subalgebra of a power of A is strong enough to prove that A is

congruence modular, and moreover it is strong enough to prove that the variety generated by

A is congruence modular. In particular, this shows that the empty tails condition holding for

all subalgebras of powers of A implies that typfBg � f2 ;3 ;4 g whenever B is a subalgebra

of a power of A. However, this implication does not hold on the level of single algebras;

A may satisfy the empty tails condition even when typfAg 6� f2 ;3 ;4 g. What is needed,

clearly, is a better understanding of the consequences of asserting that all minimal sets of

subalgebras of powers satisfy a speci�ed condition (like the empty tails condition). In Section

4 we consider a �nite algebra A which has a type 2 prime quotient h�; �i. We describe the

minimal sets corresponding to certain type 2 intervals in subdirect powers of A. In the case

where A is a simple algebra of type 2 , our description of minimal sets in subdirect powers

applies to all type 2 prime quotients in all subalgebras of powers of A.

In Section 5 we use the tools developed in the earlier part of the paper to classify the

minimal, locally �nite varieties generated by abelian algebras. Any locally �nite variety gen-

erated by abelian algebras is locally solvable. Any locally �nite minimal variety is generated

by a strictly simple algebra; by which we mean a �nite simple algebra with no nontrivial

proper subalgebras. Hence, a minimal locally �nite variety generated by abelian algebras

is generated by an abelian strictly simple algebra. The main idea behind the classi�cation

theorem is that this strictly simple abelian generating algebra must be coordinatizable by

traces. The connection between the theory of coordinatization and matrix powers allows one

to deduce that a minimal, locally �nite variety generated by a simple algebra of type 1 is

term equivalent to a matrix power of the variety of sets or the variety of pointed sets. It also

allows one to deduce that a minimal, locally �nite variety generated by a simple algebra of

type 2 is an a�ne variety. We give two proofs of the latter result in Section 5.

In Section 6 we give yet a third proof that a minimal locally �nite variety generated by

a simple algebra of type 2 is a�ne. We then extend this result to non{minimal varieties
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generated by nilpotent algebras. The main result in this section is that a locally �nite variety

generated by nilpotent algebras is either congruence permutable or else it has a nontrivial

strongly abelian subvariety. This section can be read independently of Sections 3{5.

The reader is assumed to be familiar with the book [6] on tame congruence theory, and

also with the book [2] containing the basics of universal algebra. The notation used in the

paper is mostly the same as that used in [6]. In particular, algebras are denoted by boldface

capital letters, and A is the underlying set of A. Boldface lower case letters, like b denote

sequences of elements, and b

i

stands for the i{th component of b. Thus b typically denotes

(b

1

; : : : ; b

n

) for some integer n if these are arguments of a function, and the corresponding

column vector, if this is an element of a cartesian product. If R is a binary relation, then

by a R b we mean a

i

R b

i

for all i.

Acknowledgements. The �rst and second authors are greatly indebted to Matthew Valeri-

ote for inviting them to Hamilton to work on the topic of this paper. The second author

would also like to thank Joel Berman for inviting him to Chicago for the same purpose.

2 Centrality

First we recall the concepts of centrality and of the commutator (de�ned in Chapter 3 of [6])

in a slightly more general form.

De�nition 2.1 Let A be an algebra, L and R binary relations on A, and � 2 Con(A).

We say that L centralizes R modulo �, or that the hL;Ri{term condition holds modulo � (in

notation: C(L;R; �)) if for all polynomials f of A and elements a L b and c R d of A,

f(a; c) � f(a;d)

m

f(b; c) � f(b;d) :

The commutator of L and R is de�ned to be the smallest congruence � of A with C(L;R; �)

and it is denoted [L;R]. The largest congruence � of A satisfying C(�;R; �) is denoted

by (� : R). We write ann(R) for (0

A

: R); this is the annihilator of R.

We have to make several remarks to justify this de�nition. First note that if R denotes

the compatible tolerance of A generated by R, then C(L;R; �) is equivalent to C(L;R; �). If

R itself is re
exive, then it is su�cient to assume f(a; c) � f(a;d) () f(b; c) � f(b;d) for

all terms f (rather than polynomials).

It is easy to see that the set of all congruences � satisfying C(L;R; �) is closed under

intersection, so the commutator [L;R] indeed exists. However, this set of congruences is not

necessarily a �lter in Con(A). The polynomials f(x; c) and f(x;d) in De�nition 2.1 are

called R{twins because they are derived from the same polynomial with di�erent parameter

sequences which are R{related componentwise. More generally and more precisely, when

S � A

k

is a k{ary relation on A and t(x; y) is a polynomial, then we say that a sequence of

unary polynomials, (t

A

1

(x; s

1

); : : : ; t

A

k

(x; s

k

)), where the tuples (s

1

i

; : : : ; s

k

i

) each belong to S,
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is a sequence of (simultaneous) S{twins. The statement that the hL;Ri{term condition holds

is simply this: any pair of R{twins which agree modulo � at the value a also agree modulo �

at any value L{related to a. As one can see, the relations L and R do not play symmetric

roles. We have described the hL;Ri{term condition in such a way that L refers to the relation

in the leftmost position in [L;R] and C(L;R; �) while R refers to the relation which occupies

the position to the right of L.

It is not di�cult to show that the set of all pairs (a; b) for which C(f(a; b)g; R; �) holds is

a congruence relation of A. This congruence is of course (� : R), so the de�nition of (� : R) is

meaningful. We should really speak of a left annihilator here, but this will cause no trouble,

since there is no natural de�nition for a right annihilator. Thus, if L denotes the congruence

generated by L, then C(L;R; �) and C(L;R; �) are also equivalent.

An important consequence of the existence of the annihilator is the fact that

C(�

i

; R; �) for all i 2 I () C(

_

i2I

�

i

; R; �);

where �

i

2 Con(A) for i 2 I. This does not imply, however, that the commutator is left

distributive over join.

De�nition 2.2 If A is an algebra and R is a compatible, re
exive, binary relation on A,

then the subalgebra of A

2

with underlying set R (that is, all R{related pairs) will often

be denoted by A(R). If L is any binary relation on A, then �

L;R

denotes the congruence

on A(R) generated by

fh(x; x); (y; y)i

�

�

� x L yg :

Let �

i

denote the coordinate projections of A(R) onto A. If 
 6= 0 is a congruence of A, then

we denote by 


i

the congruence �

�1

i

(
), and write �

i

for �

�1

i

(0

A

). If R is a congruence �,

then �

1

= �

2

is denoted by �.

It is easy to check that [L;R] = 0 is equivalent to the statement that the diagonal subuni-

verse of A(R) is a union of �

L;R

{classes. This observation leads to an alternative de�nition

of the commutator. It also shows that we can replace L with the congruence it generates in A

in the de�nition of �

L;R

and also in the de�nition of [L;R]. (We point out that what we write

as �

L;R

has unfortunately been expressed as �

R;L

in several places in the literature. Because

of the connection between �

L;R

and the commutator of L and R, we choose to arrange our

notation so that the left subscript of �

L;R

corresponds to the left position of [�;�]. So

remember: the right subscript of �

L;R

is considered as a subalgebra, the left subscript is put

on the diagonal.)

Next we recall some de�nitions concerning nilpotence, partially contained in De�nition 3.5

of [6].

De�nition 2.3 Let A be any algebra and � 2 Con(A). We de�ne (�]

1

= [�)

1

= [�]

1

= �,

and inductively (�]

n+1

= [�; (�

n

]], also [�)

n+1

= [[�)

n

; �], and [�]

n+1

= [[�]

n

; [�]

n

]. The

congruence � is called left or right nilpotent, or solvable, i� for some n we have (�]

n

= 0

A

,

or [�)

n

= 0

A

, or [�]

n

= 0

A

. The algebra A is left (right) nilpotent, or solvable, if the

congruence 1

A

is.
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Thus, � is left nilpotent if

[�; [�; [�; [: : : ; [�; �] : : :]]]] = 0

A

(for a su�ciently long expression). As proved in [7], the hypothesis of left nilpotence is

weaker than any other notion of nilpotence. E.g., if A is a �nite algebra satisfying [1)

k+1

= 0

(A is k{step right nilpotent), then A is left nilpotent although possibly of higher nilpotence

class. Sometimes, when we refer just to nilpotence, we shall mean the weakest form: left

nilpotence. We will need some other results and de�nitions of [7], so we reproduce them here.

De�nition 2.4 If A is a �nite algebra, � 2 Con(A), � � � in Con(A) and N is a h�; �i{

trace, then the congruence quotient h�; �i is said to be �{coherent if the implication

C(�;N

2

; �) =) C(�; �; �)

holds. If every prime quotient of Con(A) is �{coherent for every �, then A is said to be

coherent.

Note that, as all h�; �i{traces are polynomially isomorphic, if we have C(�;N

2

; �) for one

trace N , then C(�;N

2

; �) holds for all traces N .

Recall that a group is said to act regularly on a set if whenever a group element stabilizes

a point, it acts as the identity map. (Sometimes this concept is called semiregularity.)

De�nition 2.5 Assume that A is a �nite algebra, � 2 Con(A), � � � in Con(A), N is a

h�; �i{trace and H is the group of polynomial permutations of Aj

N

which are �{twins of id

N

.

We say that the congruence quotient h�; �i is �{regular if typ(�; �) 6= 1 , or typ(�; �) = 1 and

H acts regularly on N modulo �. When typ(�; �) = 1 this states that h�; �i is �{regular i�

for all p 2 H the implication

(8u; x 2 N) (p(u) � u =) p(x) � x)

holds.

We record in the following theorem and corollary the facts from [7] that we will need

concerning �{coherent and �{regular prime quotients.

THEOREM 2.6 LetA be a �nite algebra, with � 2 Con(A) and � � � inCon(A). Choose

U 2 M

A

(�; �) and denote by B and T the body and tail of U respectively. The following are

true.

(1) If [�; �]^ � � �, then h�; �i is �{regular.

(2) If h�; �i is �{regular, then it is �{coherent.

(3) Every homomorphic image of A is left nilpotent i� A is left nilpotent and coherent.

(4) If h�; �i is �{regular, then for the conditions listed below (i) =) (ii) =) (iii)() (iv)

holds.

7



(i) C(�; �; �).

(ii) [�; �] � �.

(iii) C(�; �; �).

(iv) [�; �] � �.

If (�]

k

j

U

� B

2

[ T

2

for some k, then all conditions are equivalent. If [�]

k

j

U

� B

2

[ T

2

for some k and typ(�; �) 6= 1 , then all conditions are equivalent.

Proof. For the case when typ(�; �) = 1 , statement (2) follows from Lemma 4.13 of [7].

In all other cases we always have �{coherence by Lemma 4.2 of [7], and also �{regularity

by the de�nition (so �{regularity and �{coherence are only interesting when typ(�; �) = 1 ).

Statement (1) is Theorem 4.20 of [7], (3) is Corollary 4.4 of [7], �nally (4) is a combination

of Lemmas 3.1, 3.2, and 4.14 of [7], depending on the type of h�; �i.

COROLLARY 2.7 Any locally �nite variety generated by abelian algebras is locally left

nilpotent.

The concept of an E{trace plays an important role in [6] (see Lemma 2.4 or the second

part of Chapter 6). The name E{trace was coined later.

De�nition 2.8 Let A be an algebra, e an idempotent unary polynomial, � a congruence,

and a an element of A. We say that a subset S of A is an E{trace of A with respect to e (or

with respect to �, or a=�), if S = e(A) \ a=�.

The following notation and easy{to{check observation is from [1], see Sections 5 and 7 of

that paper for a more detailed analysis.

De�nition 2.9 Let � < � 2 Con(A) for some algebra A. Set

Sep(�; �) = ff 2 Pol

1

(A)

�

�

� f(�) 6� �g :

LEMMA 2.10 Let h�; �i be a tame quotient of a �nite algebra A. Then for all 
 2 Con(A)

with � < 
 < � we have

(1) Sep(�; 
) = Sep(�; �), and

(2) Sep(
; �) = Sep(�; �).

Next we summarize some basic facts on type 2 minimal sets.

LEMMA 2.11 LetA be a �nite algebra, h�; �i a type 2 prime quotient of A and 
 = (� : �).

Choose any h�; �i{minimal set U . Let B be the body and T the tail of U , and N a h�; �i{trace

in B. Then the following hold.

(1) The induced algebra on N=� (in the algebra A=�) is polynomially equivalent to a vector

space of dimension one over a �nite �eld K.
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(2) The induced algebra Aj

B

is Mal'cev, nilpotent, and is an E{minimal algebra of type 2 .

(3) If � 2 Con(A) and �

s

� � ^ 
, then �j

U

� B

2

[ T

2

.

(4) C(�; 
; �) holds in A.

(5) We have 
 = (� : S

2

) for every subset S of A contained in a �{block, and containing

a h�; �i{trace. Such subsets include, in particular, the E{traces of A with respect to �

that are not contained in �.

(6) The set B is the intersection of a 
{class of A with U , and is therefore an E{trace

of A.

(7) If U is a minimal set for some other tame quotient, then the type of this quotient is 2

and B is the body of U with respect to this quotient.

Proof. Statement (1) is the de�nition of a type 2 quotient, (2) follows from The-

orem 4.31 and Lemma 4.36 of [6]. Theorem 2.6 shows that h�; �i is 
{regular and 
{coherent.

By the de�nition of 
 we have C(
; �; �), so (4) follows from Theorem 2.6 (4).

To prove (5) let � 2 Con(A). Clearly, C(�; S

2

; �) is equivalent to C(�; �; �) by coher-

ence. This proves the �rst statement in (5). Now let S = e(A) \ a=� for some idempotent

polynomial e of A, and elements a; b 2 S such that (a; b) =2 �. Connect a and b by a sequence

of h�; �i{traces N

i

. Then one of the sets e(N

i

) is not contained in a �{block, so it is also a

h�; �i{trace, which is contained in S. Thus, (5) is proved.

Let N be a h�; �i{trace contained in B. From (1) we get that �j

N

covers �j

N

. As all

h�; �i{traces of U are polynomially isomorphic by Lemma 4.20 (5) of [6], we have that �j

B

covers �j

B

. Combining this with the fact that modulo �j

B

, Aj

B

is nilpotent (by applying (2)

to the algebra A=� and the prime quotient h0

A=�

; �=�i), we have that C(B

2

; �j

B

; �). Then

we have C(B

2

; N

2

; �), so B

2

� (� : N

2

) = 
. On the other hand, 
j

U

is clearly contained

in the congruence � de�ned in Lemma 4.27 (1) of [6], implying that 
j

U

� B

2

[ T

2

. This

proves (6). Also, in view of Lemma 4.27 (4) (ii) of [6], 
j

U

� B

2

[ T

2

and �

s

� � ^ 
 implies

that �j

U

� B

2

[ T

2

. This proves (3).

Finally (7) is proved in Section 5 of [10].

We conclude this section by proving one more statement. In the following theorem,

C

2

denotes the binary centrality relation. Its de�nition is similar to De�nition 2.1, but here

c and d must be elements, and not vectors (hence f is a binary polynomial). Clearly, binary

centrality is weaker than centrality.

THEOREM 2.12 Let A be a �nite algebra, �

0

; �; �; � congruences, and L a binary relation

of A. Suppose that

(i) �

0

� � < �, and � can be connected to � by a chain of prime quotients of type 2 .

(ii) � _ �

s

� �.

Then we have

C(�; L; �) & C

2

(L; � ;�

0

) =) C(�; L;�) :

9



Proof. Suppose that C(�; L;�) fails. As C(�; L; �) holds, there is a prime quotient

h�; �i of type 2 between � and � such that C(�; L; �) fails, but C(�; L; �) holds. Thus, there

exists a polynomial f , and elements and vectors a � b and c L d of A such that

s = f(a; c) � t = f(a;d)

u = f(b; c) � � � v = f(b;d)

(u � v follows from C(�; L; �)). By tame congruence theory, there exists a unary polynomial

h such that (h(u); h(v)) 2 � � �, and U = h(A) is a h�; �i{minimal set. Then h(u) and h(v)

are contained in the body B of U . We show that h(s) and h(t) are also in B.

Indeed, we show that the conditions of Lemma 2.11 (3) are satis�ed with � = � _ �.

By our assumptions, �

s

� �

s

� �. On the other hand, 
 = (� : �) � � obviously holds, so

� � � ^ 
 � � and therefore �

s

� � ^ 
. Thus Lemma 2.11 (3) implies that �j

U

� B

2

[ T

2

.

On the other hand, h(s) � h(u) and h(t) � h(v), since a � b, so we have proved that h(s)

and h(t) are in B.

Now let d be a pseudo{Mal'cev operation on U . Then Lemma 2.9 of [10] shows that

h(s) � h(t) implies h(u) � h(v), and this contradiction proves the theorem.

COROLLARY 2.13 Let � and � be congruences of a �nite algebra A. Suppose that

typf�; �_�g = f2 g. Then [�;�] � � implies that (�_�)=� is an abelian congruence, hence

[� _ �; � _ �] � �.

Proof. Apply Theorem 2.12 with � = � and � = � _ �. Then (i), (ii), and C(�; L; �)

are satis�ed for every congruence � � � _ � and for every binary relation L. So for every

congruence �

0

� � we have that

C(L; � ;�

0

) =) C(�; L;�) :

We apply this observation twice. First let L = � = � and �

0

= [�;�]. Then C(L; � ;�

0

) =

C(�;�; [�;�]) obviously holds, so we get C(�;�;�). Together with C(�; �;�) this implies

C(� _ �; �;�) by the properties of the centrality relation mentioned at the beginning of this

section. Now apply the above implication again with L = � _ �, � = �, and �

0

= �. We get

that C(�;� _ �;�) holds. But C(�; �_ �;�) also holds, so �nally we get C(� _ �; �_ �;�),

as desired.

3 Coordinatization

Let � be a minimal abelian congruence of a �nite algebra A. As shown by tame congruence

theory, the induced algebras on the h0

A

; �i{traces have a very tight structure. In this section

we show the same for subsets of the form T = f(N; : : : ;N), where N is a h0

A

; �i{trace, and

f is a polynomial of A. We call such a set T a h0

A

; �i{multitrace. Similar terminology will

be used when h0

A

; �i is replaced with an arbitrary tame quotient. We shall learn that T is an

E{trace of A with respect to �, and Aj

T

is term equivalent (or more precisely, isomorphic to

an algebra which is term equivalent) to a matrix power of Aj

N

(see Theorem 3.10). We shall

say that T is a coordinatizable subset of A (or, more speci�cally, that T is coordinatizable

by traces). Thus, before starting our discussion, we have to summarize some facts on non{

indexed products and matrix powers. The two main references are [13] and [20].
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De�nition 3.1 Let A

1

; : : : ;A

k

be algebras, and f

i

an n{ary function on A

i

for 1 � i � k.

De�ne the n{ary function f

1

� � � � � f

k

on A

1

� � � � �A

k

to act as f

i

in the i{th component

for 1 � i � k, that is,

(f

1

� � � � � f

k

)(x

1

; : : : ;x

n

) =

0

B

B

@

f

1

(x

1

1

; : : : ; x

n

1

)

.

.

.

f

k

(x

1

k

; : : : ; x

n

k

)

1

C

C

A

;

where x

j

2 A

1

� � � � � A

k

for 1 � j � n, thought of as column vectors. We sometimes

call this function the product of f

1

; : : : ; f

n

. If f

i

is the i{th projection for 1 � i � k, then

the resulting product is called the diagonal operation on A

1

� � � � � A

n

. The non{indexed

product A

1


 � � � 
A

k

is de�ned to have underlying set A

1

� � � � �A

k

, and basic operations,

for each non{negative integer n, of the form f

1

� � � � � f

k

, where f

i

runs over all n{ary terms

of A

i

for 1 � i � k.

De�nition 3.2 Let A be an algebra and k � 0 an integer. The k{th matrix power of A,

denoted by A

[k]

, is de�ned to have underlying set A

k

, and basic operations, for each non{

negative integer n, of the form

f(x

1

; : : : ;x

n

) =

0

B

B

@

f

1

(x

1

1

; : : : ; x

k

1

; : : : ; x

n

k

)

.

.

.

f

k

(x

1

1

; : : : ; x

k

1

; : : : ; x

n

k

)

1

C

C

A

;

where x

j

2 A

k

for 1 � j � n, thought of as column vectors, and f

i

runs over all nk{ary term

operations of A for 1 � i � k.

The non{indexed product and the matrix power are considered non{indexed algebras,

although we will see in the next theorem how to regard them as indexed algebras. The

di�erence between the two types of operations is that, although both take as input a matrix

of n columns and k rows, the component maps in the case of a matrix power can depend on all

elements of this matrix, while in the case of a non{indexed product the i{th component map

depends only on the i{th row. To get the clone (all terms) of the direct product A

1

�� � ��A

k

(this makes sense only if these algebras are of the same similarity type), one has to consider

the reduct of A

1


 � � � 
A

k

consisting of the functions f

A

1

� � � � � f

A

k

, where f is a term

in the language of the algebras A

i

. We shall need one more special type of operation of a

matrix power.

De�nition 3.3 Let S be any set. The unary shift operation on S

k

is de�ned by

s

0

B

B

B

B

B

B

B

@

x

1

x

2

.

.

.

x

n�1

x

n

1

C

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

B

@

x

n

x

1

x

2

.

.

.

x

n�1

1

C

C

C

C

C

C

C

A

:

The following, easy{to{verify theorem collects some well{known facts concerning the con-

cepts just de�ned. Statement (5) explains the name `matrix power'.
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THEOREM 3.4 Let A and A

1

; : : : ;A

k

be algebras and B = A

1


 � � � 
A

k

. Let V be a

variety with similarity type � . Then the following hold.

(1) Every congruence of B is a product congruence (see [2], De�nition 11.4), so Con(B)

is isomorphic to the direct product Con(A

1

) � � � � �Con(A

k

).

(2) Every congruence of A

[k]

is a product congruence of the form �� � � � � �, where � is a

congruence of A, so Con(A

[k]

) is isomorphic to Con(A). This isomorphism preserves

the notions de�ned in tame congruence theory (like centrality, type labeling, tameness).

(3) If the algebras A

1

; : : : ;A

k

are of the same similarity type, � , then the clone of B is

generated by the clone of A

1

� � � � �A

k

, together with the diagonal operation. Thus

we can regard B as an indexed algebra over the similarity type obtained by expanding

� by a new k-ary operation symbol.

(4) The clone of A

[k]

is generated by all the operations in the (k{fold) non{indexed product

A
 � � � 
A, together with the shift operation. Thus, if A has similarity type � , then

we may regard A

[k]

as an indexed algebra over the similarity type �

[k]

, obtained by

expanding � by a new k-ary and a new unary operation symbol.

(5) Let R be an associative ring and M an R{module. Then M

[k]

is term equivalent to

the moduleM

k

considered over the n� n matrix ring over R in the usual way.

(6) The collection of all algebras of similarity type �

[k]

isomorphic to k{th matrix powers of

algebras in V is a variety. It is denoted by V

[k]

and called the k{th matrix power of V.

Every subvariety of V

[k]

is of the form U

[k]

for some subvariety U � V. In particular,

V(A

[k]

) = (V(A))

[k]

.

Now let us see what a coordinatizable subset is.

De�nition 3.5 Let A be an algebra, n a positive integer, f an n{ary polynomial of A,

and S

1

; : : : ; S

n

non{empty subsets of A. We say that the set T = f(S

1

; : : : ; S

n

) can be

coordinatized (with respect to f and S

1

�� � ��S

n

), if there exist unary polynomials g

1

; : : : ; g

n

of A satisfying

g

i

(f(x

1

; : : : ; x

n

)) = x

i

(x

1

2 S

1

; : : : ; x

n

2 S

n

, 1 � i � n).

The g

i

are called the coordinate maps (with respect to f and T ).

First we investigate a weaker form of this condition.

LEMMA 3.6 Let A be a �nite algebra, S

1

; : : : ; S

n

and T non{empty subsets of A, and

g

1

; : : : ; g

n

2 Pol

1

(A), f 2 Pol

n

(A) such that

(i) f(S

1

; : : : ; S

n

) � T ;

(ii) g

i

(T ) � S

i

for 1 � i � n;

12



(iii) f(g

1

(x); : : : ; g

n

(x)) = x for all x 2 T .

Let G : T ! S

1

� � � � � S

n

be de�ned by

G(x) = (g

1

(x); : : : ; g

n

(x)) ;

and let S = G(T ). Then the following hold.

(1) The induced algebra (Aj

S

1


 � � � 
Aj

S

n

) j

S

is term equivalent to a reduct of Aj

T

.

(2) If the sets S

1

; : : : ; S

n

are all equal, then S is the range of an idempotent unary polynomial

of the algebra P = (Aj

S

1

)

[n]

, and Aj

T

is term equivalent to Pj

S

.

(3) If � is an arbitrary congruence of A, and all the S

i

are E{traces with respect to �,

then T is an E{trace with respect to �.

Proof. Let F = f j

S

: S ! T . Then F and G are inverse bijections between S and T

by (iii). For a function t : T

k

! T de�ne G(t) : (S

1

� � � � � S

n

)

k

! S by

G(t)(x

1

; : : : ;x

k

) = G(t(f(x

1

); : : : ; f(x

k

))) :

Similarly, to any h : S

k

! S we can assign F (h) by composing it with G inside and F outside.

This way we have set up inverse bijections between the set of all �nitary functions on T , and

the set of all �nitary functions on S. Let

C = f(G(t))j

S

�

�

� t 2 Pol(Aj

T

)g :

Clearly, G and F establish an isomorphism between the algebras Aj

T

and (S; C).

To prove (1) let h be a k{ary polynomial of Aj

S

1


 � � �
Aj

S

n

that can be restricted to S.

Then h = h

1

j

S

1

� � � ��h

n

j

S

n

, where the h

i

are k{ary polynomials of A that can be restricted

to S

i

for 1 � i � n. De�ne

t(x

1

; : : : ; x

k

) = f(h

1

(g

1

(x

1

); : : : ; g

1

(x

k

)); : : : ; h

n

(g

n

(x

1

); : : : ; g

n

(x

k

))) :

Then t is a k{ary polynomial of A that can be restricted to T , and an easy calculation shows

that (G(tj

T

))j

S

= hj

S

, proving (1).

To prove (2) assume that S

1

= � � � = S

n

. To show that C is the clone of Pj

S

let s be

the unary shift operation of P. De�ne s

0

(x) = f(g

n

(x); g

1

(x); g

2

(x); : : : ; g

n�1

(x)). It is easy

to check that (G(s

0

j

T

))j

S

= sj

S

(in particular, the set S is closed under s). Thus, (1) and

Theorem 3.4 (4) show that C � Clo(Pj

S

). For the converse inclusion, assume that t 2 Pol

k

(A)

can be restricted to T . Then the de�nition of h = G(tj

T

) clearly implies that its component

maps are nk{ary polynomials of A that can be restricted to S

i

, and that h preserves S, so

indeed hj

S

2 Clo(Pj

S

). Finally, e = G(id

T

) is clearly an idempotent polynomial of P with

range S. Thus (2) is proved.

To prove (3), let S

i

= e

i

(A)\ a

i

=� for some idempotent polynomials e

i

of A and a

i

2 S

i

.

Let

h(x) = f(e

1

g

1

(x); : : : ; e

n

g

n

(x)) ;
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and let h

k

be an idempotent power of h. We prove that T = h

k

(A)\a=� for any a 2 T . First

we show that h(a=�) � T . Indeed, if b 2 a=�, then e

i

g

i

(b) � e

i

g

i

(a) 2 S

i

by condition (ii),

so e

i

g

i

(b) 2 e

i

(A) \ a

i

=� = S

i

, hence h(b) 2 T by condition (i). Thus, h(a=�) � T . On the

other hand, h acts on T as the identity map by condition (iii), and by the same condition,

T is contained in a single �{block. Hence, h is already idempotent on a=�, with range T .

Therefore e = h

k

still has range T on a=�, but e is idempotent on A. If e(c) 2 a=�, then

e(c) = e(e(c)) 2 T , so indeed T = e(A) \ a=� as stated.

When we have a coordinatizable subset, we get a full matrix power, and not just an

induced algebra on an E{trace.

COROLLARY 3.7 Let A be a �nite algebra, f an n{ary polynomial, and S

1

; : : : ; S

n

non{

empty subsets of A such that T = f(S

1

; : : : ; S

n

) is coordinatizable with respect to f and

S

1

� � � � � S

n

, with coordinate maps g

1

; : : : ; g

n

. Then the following hold.

(1) If � is an arbitrary congruence of A, then T is an E{trace with respect to � if and

only if all the S

i

are E{traces with respect to �.

(2) If the sets S

1

; : : : ; S

n

are polynomially isomorphic, then Aj

T

is term equivalent to the

full matrix power (Aj

S

i

)

[n]

for all 1 � i � n.

Proof. First note that coordinatizable subsets satisfy conditions (i){(iii) of Lemma 3.6

(to verify condition (iii), substitute a general element x = f(x

1

; : : : ; x

n

) of T , where x

i

2 S

i

).

In this case, however, we get that S = S

1

� : : :� S

n

.

To show (2) let h

i

: S

i

! S

1

be a polynomial isomorphism with polynomial inverse

k

i

: S

1

! S

i

. Set g

0

i

= h

i

� g

i

and

f

0

(x

1

; : : : ; x

n

) = f(k

1

(x

1

); : : : ; k

n

(x

n

)) :

Clearly, T satis�es (i){(iii) of Lemma 3.6 with respect to f

0

, S

n

1

, and g

0

i

. Thus, statement (2)

of this lemma immediately implies (2).

To prove (1) �rst assume that the sets S

i

are E{traces of A for 1 � i � n. Then

Lemma 3.6 (3) clearly implies that T is an E{trace with respect to �. For the converse

we apply the same lemma, but with a di�erent selection of subsets and polynomials. So

assuming that T is an E{trace with respect to �, we want to show that S

i

is also an E{trace.

Let n

0

= 1, T

0

= S

i

, S

0

1

= T , f

0

= g

i

and g

0

1

(x) = f(c

1

; : : : ; c

i�1

; x; c

i+1

; : : : ; c

n

), where

c

j

2 S

j

are arbitrary, but �xed elements. It is straightforward to check that the conditions

of Lemma 3.6 (3) are satis�ed. Thus, the corollary is proved.

LEMMA 3.8 Let A be a �nite algebra, S a subset of A, and T = f(S; : : : ; S) for some

n{ary polynomial f of A. Suppose that T has more than one element and

(i) The induced algebra Aj

S

is polynomially equivalent to a vector space over a �nite

�eld K with addition + and zero element 0.

(ii) For any two elements a 6= b 2 T there exists a unary polynomial g of A that separates

a and b, and maps T into S.
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Then T is a coordinatizable subset of A with respect to S

k

and a k{ary polynomial f

0

for

some integer k � n.

Proof. Let 0

0

= f(0; : : : ; 0) 2 T and

G = fgj

T

�

�

� g 2 Pol

1

(A), g(T ) � S, g(0

0

) = 0g :

This is a �nite dimensional vector space over K under pointwise operations. Let g

1

; : : : ; g

k

be a basis. Since g

i

� f can be restricted to S, and maps 0 to 0, we can write

g

i

(f(x

1

; : : : ; x

n

)) = �

i

1

x

1

+ � � �+ �

i

n

x

n

(x

j

2 S, �

i

j

2 K, 1 � i � k, 1 � j � n).

As the mappings g

1

; : : : ; g

k

are linearly independent, so are the rows of the matrix

M =

0

B

B

@

�

1

1

: : : �

1

n

.

.

.

.

.

.

�

k

1

: : : �

k

n

1

C

C

A

:

This matrix induces a linear map L : K

n

! K

k

, which is therefore onto. Thus k � n, and

there exists a linear map L

0

: K

k

! K

n

satisfying LL

0

(v) = v for all v 2 K

k

. Thus, the

matrixM

0

of L

0

satis�es that MM

0

is the k � k identity matrix. Let

M

0

=

0

B

B

@

�

1

1

: : : �

1

k

.

.

.

.

.

.

�

n

1

: : : �

n

k

1

C

C

A

;

and choose k{ary polynomials `

j

2 Pol

k

(A) satisfying

`

j

(x

1

; : : : ; x

k

) = �

j

1

x

1

+ � � �+ �

j

k

x

k

(x

i

2 S, 1 � i � k, 1 � j � n).

Finally let

f

0

(x

1

; : : : ; x

k

) = f(`

1

(x

1

; : : : ; x

k

); : : : ; `

n

(x

1

; : : : ; x

k

)) :

Then we have

g

i

(f

0

(x

1

; : : : ; x

k

)) = x

i

(x

1

; : : : ; x

k

2 S, 1 � i � k).

This is a simple calculation based on MM

0

being the identity matrix. So to �nish the proof

it is su�cient to show that T = f

0

(S; : : : ; S).

Clearly, T � f

0

(S; : : : ; S). To prove the converse inclusion, we �rst show that if a 6= b 2 T ,

then there exists an i such that g

i

(a) 6= g

i

(b). By condition (2), there is a g 2 Pol

1

(A)

with g(T ) � S and g(a) 6= g(b). Then g(x) � g(0

0

) still separates a and b, and this new

function is an element of the vector space G. As g

1

; : : : ; g

k

is a basis for this vector space,

g(x) � g(0

0

) can be written as a linear combination of the maps g

i

. Therefore g

i

(a) = g

i

(b)

indeed cannot happen for all i.

Now let a 2 T and b = f

0

(g

1

(a); : : : ; g

k

(a)). It is su�cient to show that a = b, since

b 2 f

0

(S; : : : ; S). By the result of the previous paragraph, we have to show that g

i

(a) = g

i

(b)

for all 1 � i � k. But this is clear, since the g

i

are coordinate maps for f

0

.
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LEMMA 3.9 Let A be a �nite algebra, S a subset of A, and T = f(S; : : : ; S) for some

n{ary polynomial f of A. Suppose that T has more than one element and

(i) The induced algebra Aj

S

is permutational (that is, it is essentially unary, and every

unary polynomial is either a permutation or constant).

(ii) For any two elements a 6= b 2 T there exists a unary polynomial g of A that separates

a and b, and maps T into S.

Then T is a coordinatizable subset of A with respect to S

k

and a k{ary polynomial f

0

for

some integer k � n.

Proof. If f does not depend on, say, its n{th variable on S, then let f

0

(x

1

; : : : ; x

n�1

) =

f(x

1

; : : : ; x

n�1

; c), where c is an arbitrary, but �xed element of S. Clearly, T = f

0

(S; : : : ; S).

Hence, we may assume that f depends on all of its variables on S. We shall prove in this case

that T is coordinatizable with respect to f . (Note that having f depend on several variables

does not contradict condition (i). Condition (i) only asserts that if h 2 Pol

k

(A) has the

property that h(S

k

) � S, then hj

S

depends on at most one variable.)

To simplify notation, we shall construct the coordinate map g

1

. As f depends on its �rst

variable, there exist elements a; b 2 S and c 2 S

n�1

such that f(a; c) 6= f(b; c). Choose,

by condition (ii), a unary polynomial g that maps T to S and separates f(a; c) and f(b; c).

Hence, the polynomial

gf(x

1

; : : : ; x

n

)

depends on its �rst variable on S. This polynomial can be restricted to S. As the induced

algebra Aj

S

is permutational, this polynomial does not depend on any other variable on S,

and is a permutation in its �rst variable on S. Denote by m the order of this permutation,

and let h(x) = gf(x; : : : ; x). Then h(x

1

) = gf(x

1

; x

2

; : : : ; x

n

), hence

h

m�1

gf(x

1

; : : : ; x

n

) = h

m

(x

1

) = x

1

(x

1

; : : : ; x

n

2 S).

Thus, g

1

= h

m�1

� g is the required coordinate map.

THEOREM 3.10 Let � be an abelian congruence on a �nite algebra A such that h0

A

; �i

is tame and let T be a h0

A

; �i{multitrace. Then T is an E{trace with respect to �, it is

coordinatizable by traces, and Aj

T

is term equivalent to (Aj

N

)

[k]

where N is a h0

A

; �i{trace.

Proof. Depending on the type of h0; �i, apply Lemma 3.8 or Lemma 3.9. Note that

if T = f(N; : : : ;N) for some n{ary polynomial f , then the resulting number k is at most n,

but it is not necessarily equal to n.

The conclusion of Theorem 3.10 (that T is an E{trace which is coordinatizable with

respect to N

k

) is false when � is nonabelian. However, in the type 3 case we still have the

weaker conditions assumed in Lemma 3.6. Recall that an algebra is primal if every �nitary

operation on the universe of the algebra is a term operation of the algebra.

LEMMA 3.11 Let A be a �nite algebra, S a subset of A, and T = f(S; : : : ; S) for some

n{ary polynomial f of A. Suppose that T has more than one element and
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(i) The induced algebra Aj

S

is primal.

(ii) For any two elements a 6= b 2 T there exists a unary polynomial g of A that separates

a and b, and maps T into S.

Then there exist g

1

; : : : ; g

n

2 Pol

1

(A) satisfying conditions (i){(iii) of Lemma 3.6 (with

S

i

=S).

Proof. By the second hypothesis, we can choose unary polynomials p

i

(x) of A, where

1 � i � k for some k, which map T into S and which separate the elements of T . For every

y 2 T pick a vector (x

y

1

; : : : ; x

y

n

) in S

n

such that f(x

y

1

; : : : ; x

y

n

) = y. For 1 � i � n let h

i

be a

k{ary polynomial of A mapping S

k

to S, and satisfying, for every y 2 T , that

h

i

(p

1

(y); : : : ; p

k

(y)) = x

y

i

:

Why do we have such polynomials? As the mapping that sends every y 2 T to the k{tuple

(p

1

(y); : : : ; p

k

(y)) 2 S

k

is one to one, there certainly exists a function h

i

satisfying the above

equation. But Aj

S

is primal, so the desired polynomials indeed exist. Now set

g

i

(x) = h

i

(p

1

(x); : : : ; p

k

(x)) :

Then the polynomials g

i

clearly satisfy the conditions.

THEOREM 3.12 Let 0 � � be a type 3 minimal congruence on a �nite algebra A and

let T be a h0; �i{multitrace. Then T is an E{trace with respect to � and Aj

T

is a primal

algebra.

Proof. The statement follows from Lemma 3.6 (2) and from Lemma 3.11, since a

matrix power of a primal algebra is clearly primal and the algebra induced on any subset of

a primal algebra is again primal.

A second proof of the fact that Aj

T

is primal when the type is 3 can be obtained from

Rosenberg's primal algebra classi�cation. One can arrange things so that T is a maximal set

of the form f(N; : : : ;N) where N � T is a h0

A

; �i{trace. These conditions imply that T is

closed under f and therefore f is an operation of Aj

T

. One can also arrange it so that Aj

T

has operations which restrict to give all Boolean operations on N . These Boolean operations

together with f are incompatible with all Rosenberg{type relations.

It is not true in general that we can get coordinatization in the type 3 case. Indeed,

consider any three{element primal algebra A and any two{element subset N of A. Then

there is a binary polynomial of A satisfying f(N;N) = A, but A is not coordinatizable,

because its cardinality is not a power of 2.

Multitraces in the type 4 and 5 cases are even less well{behaved. Their behavior with

respect to coordinatization will be discussed in a subsequent paper.
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4 Minimal sets in subdirect powers

In this section, A will be a �nite algebra and C will be a �nite subdirect power of A. We shall

compare the structure of certain minimal sets in C to minimal sets in A. We �x the following

notation concerning A: �; �; 
 2 Con(A), � � �, typ(�; �) = 2 and � � 
 � (� : �). If N

is an h�; �i{trace, then Aj

N

=�j

N

is polynomially equivalent to a 1{dimensional vector space

over a �nite �eld. LetK denote that �eld. We assume that C is a subdirect subalgebra of A

k

,

k < !, which satis�es C � 


(k)

. The condition C � 


(k)

means that if (c

1

; : : : ; c

k

) 2 C, then

(c

i

; c

j

) 2 
 for all 1 � i; j � k. We �x the following notation for C: �

0

= (�

k

)j

C

, �

0

= (�

k

)j

C

,

and 


0

= (


k

)j

C

.

It can happen that the algebra C is very `thin'. The results below are empty if �

0

= �

0

.

Let us call a coordinate i (with 1 � i � k) bad, if a �

0

b implies a

i

� b

i

for all elements a;b

of C, otherwise i is called a good coordinate. In other words, the good coordinates are those

for which �

0

and �

0

map to di�erent congruences under the i{th projection. We have �

0

< �

0

if and only if there exists at least one good coordinate. In `normal' subalgebras of A

k

, for

example when C contains the diagonal, we automatically have that every coordinate is good.

Throughout this section, we assume that there is at least one good coordinate.

The minimal sets in C that will concern us correspond to prime quotients which we call

\centralized". We de�ne h�; �i to be centralized if

(1) �

0

� � � � � �

0

,

(2) typ(�; �) = 2 , and

(3) C(


0

; �; �) holds.

Of course, it is condition (3) which suggests the name \centralized". We want to describe the

minimal sets corresponding to centralized quotients in C. For this purpose, we letM denote

the collection of all subsets of C which are minimal with respect to at least one centralized

quotient.

THEOREM 4.1 If A, �, �, 
, K, k, C, �

0

, �

0

, 


0

and M are as above, then the following

hold.

(1) There exists a centralized quotient.

(2) If 


s

� � in Con(A), then all type 2 prime quotients in the interval I[�

0

; �

0

] are

centralized.

(3) Every member U ofM is a minimal set with respect to each centralized quotient. The

body and the tail of U are the same with respect to all centralized quotients.

(4) If U 2 M and f is a unary polynomial of C satisfying f(�

0

j

U

) 6� �

0

, then f(U) 2 M

and f is a polynomial isomorphism of U onto f(U).

(5) Let U 2 M, M be the intersection of the body of U with a class of �

0

, C = C=�

0

,

and M the image of M in this factor. Then Cj

M

is polynomially equivalent to a vector

space over K of dimension at most k. For every n{ary polynomial f of C, the set

f(M; : : : ;M) is a coordinatizable E{trace of C with respect to M

`

for some ` � n.

18



(6) The elements of M are exactly the sets of the form U = C \ (e

1

(A) � � � � � e

k

(A)),

where (e

1

; : : : ; e

k

) is a sequence of simultaneous C{twins and each e

i

is an idempotent

polynomial of A with e

i

(A) 2 M

A

(�; �). The body and tail of U are of the form

C \ (B

1

� � � � � B

k

) and C \ (T

1

� � � � � T

k

), respectively, where B

i

and T

i

are the

h�; �i{body and tail of e

i

(A).

The six parts of Theorem 4.1 are proved in Lemmas 4.3, 4.6, 4.8, and 4.10. These lemmas

depend on intermediate results.

We introduce the following notation for certain congruences of C. For 1 � i � k, let �

i

be the i{th projection kernel restricted to C, and

�

i

= (1

A

� � � � � 1

A

� �� 1

A

� � � � � 1

A

)j

C

�

i

= (1

A

� � � � � 1

A

� � � 1

A

� � � � � 1

A

)j

C

�

i

= (� � � � � � � � � � � � � � � � �)j

C

;

where �, �, and � occur in the i{th component of �

i

, �

i

, and �

i

, respectively.

LEMMA 4.2 The following are true.

(1) �

i

� �

i

and typ(�

i

; �

i

) = 2 for all i.

(2) �

i

^ �

0

= �

i

for all i.

(3) i is a good coordinate if and only if �

0

6� �

i

if and only if �

i

_ �

0

= �

i

if and only if

�

i

< �

0

if and only if �

i

=�

i

and �

0

=�

i

are perspective quotients. If i is bad, then �

i

= �

0

.

(4) The intersection of all �

i

for 1 � i � k is �

0

.

Proof. (1) follows from the fact that C=�

i

is isomorphic to A, and �

i

=�

i

corresponds

to � and �

i

=�

i

corresponds to � under this isomorphism. We get (2), (3), and (4) as straight-

forward consequences of the de�nitions and of (1).

We prove Theorem 4.1 (1) and (2) immediately so that it is clear that the rest of the

results in this section have content.

LEMMA 4.3 Assume the hypotheses of Theorem 4.1.

(1) There exists a centralized quotient. In fact, if �

0

= � � � � �

0

, then h�; �i is centralized.

(2) If 


s

� � in Con(A), then all type 2 prime quotients in the interval I[�

0

; �

0

] are

centralized.

Proof. For part (1), choose h�; �i so that �

0

= � � � � �

0

. The quotient h�; �i is prime

by choice. Since 
 � (� : �) in A we get




0

� (�

0

: �

0

) � (�

0

: �) = (� : �)

in C. Hence, C(


0

; �; �). What remains to be shown is that typ(�; �) = 2 .
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Choose (a;b) 2 � � �. We have (a;b) 2 �

0

� �

0

, so we have (a

i

; b

i

) 2 � � � for some i.

For this i we have (a;b) 2 �

i

� �

i

. Thus, we have

�

i

= �

i

_ � < �

i

_ � � �

i

:

By Lemma 4.2, �

i

� �

i

, so we conclude that h�; �i and h�

i

; �

i

i are perspective. Hence,

typ(�; �) = typ(�

i

; �

i

) = 2 .

To prove (2), �rst observe that [
; �] � �, so [


0

; �

0

] � �

0

. Now let h�; �i be an arbitrary

type 2 prime quotient in I[�

0

; �

0

]. We have

[


0

; �] � [


0

; �

0

] � �

0

� �:

Since 


s

� � in Con(A), we get that 


0

s

� �

0

in Con(C). This means that there is a k

such that [


0

]

k

� �

0

. But [�; �] � �, so [�

0

; �

0

] � �

0

and therefore [


0

]

k+1

� �

0

� �. Now

Theorem 2.6 (4) applies to show that [


0

; �] � � (which holds) is equivalent to C(


0

; �; �).

Hence h�; �i is centralized.

LEMMA 4.4 For every congruence � of C with �

0

< � � �

0

and for each good i we have

that

Sep(�

0

; �) = Sep(�

0

; �

0

) = Sep(�

i

; �

i

):

Proof. We �rst show that Sep(�

0

; �) = Sep(�

0

; �

0

). Let f 2 Pol

1

(C). Since Sep(�

0

; �) �

Sep(�

0

; �

0

), clearly, we have to show that if f(�) � �

0

, then f(�

0

) � �

0

. Assume that f(�) � �

0

and let the components of f be f

1

; : : : ; f

k

. Set

 

i

= f(x; y) 2 �

�

�

� (8g 2 Pol

1

(A)) (f

i

g(x) � f

i

g(y))g :

It is easy to see that this is a congruence of A for every i, and � �  

i

� �. As C is a

subdirect power of A, for every g 2 Pol

1

(A) and any given 1 � i � k there exists a unary

polynomial ĝ of C that acts as g in the i{th component. This implies that if

a = (a

1

; : : : ; a

n

) � (b

1

; : : : ; b

n

) = b;

then a

i

 

i

b

i

for all i (as f collapses � to �

0

). Now � 6= �

0

, so we can choose a, b, and i so

that (a

i

; b

i

) =2 �. Then a

i

 

i

b

i

implies that  

i

6= �, so by � � � we have that  

i

= �. Setting

g to be the identity map of A we see that f

i

(x) � f

i

(y) holds for all x � y, that is, f

i

collapses

� into �. Now we use the fact that C � 


(k)

. As the polynomials f

i

are C{twins, they are

(� : �){twins also. If one collapses � to �, then so do all the others. Thus, we indeed have

f(�

0

) � �

0

.

The argument that Sep(�

0

; �

0

) � Sep(�

i

; �

i

) is not very di�erent from the above. Using

the fact that C is a subdirect power of A one gets that any polynomial f for which f(�

i

) � �

i

has i{th component f

i

such that f

i

(�) � �. As argued above, every component of f collapses

� into � and so f(�

0

) � �

0

.

Now we argue that Sep(�

i

; �

i

) � Sep(�

0

; �

0

). Since i is good, Lemma 4.2 (3) proves that

�

0

=�

i

is perspective with �

i

=�

i

. Hence, Sep(�

i

; �

i

) = Sep(�

i

; �

0

). Since �

0

� �

i

< �

0

, we get

Sep(�

i

; �

0

) � Sep(�

0

; �

0

). These last two sentences give the desired conclusion.
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LEMMA 4.5 Let h�; �i be a centralized quotient, choose U 2 M

C

(�; �) and denote the body

of U by B.

(1) �

i

� (� : �) for each i.

(2) The lattice interval between �

0

j

B

and �

0

j

B

in Con(Cj

B

) is a complemented modular

lattice.

(3) Sep(�; �) = Sep(�

0

; �

0

).

Proof. Since C � 


(k)

and � � 
 we get that �

i

� 


0

for all i. Since h�; �i is centralized,

we get that �

i

� 


0

� (� : �). This proves (1).

Since B is an E{trace with respect to (� : �), the restriction map is a homomorphism from

the interval I[0; (� : �)] of Con(C) onto Con(Cj

B

). Since �

i

� (� : �), by (1), and �

i

� �

i

,

by Lemma 4.2 (1), we get that �

i

j

B

= �

i

j

B

or �

i

j

B

� �

i

j

B

in Con(Cj

B

). The induced algebra

Cj

B

is Mal'cev, so the lattice Con(Cj

B

) is modular. Using Lemma 4.2 and the modularity

of Con(Cj

B

), we get that �

i

j

B

= �

0

j

B

or �

i

j

B

� �

0

j

B

for all i. Since �

0

= \

k

i=1

�

i

, then by

restriction to B we �nd that �

0

j

B

is a meet of lower covers of �

0

j

B

. This is enough to force

the lattice interval I[�

0

j

B

; �

0

j

B

] to be a complemented modular lattice. This proves (2).

By Lemma 4.4, we have Sep(�

0

; �

0

) = Sep(�

i

; �

i

) for any good i. To prove (3), we will

show that Sep(�

i

; �

i

) = Sep(�; �) for some good i. Since I[�

0

j

B

; �

0

j

B

] is a complemented

modular lattice for which �

i

j

B

= �

0

j

B

or �

i

j

B

� �

0

j

B

for each i and �

0

j

B

= \

k

i=1

�

i

j

B

, then the

prime quotient h�j

B

; �j

B

i is projective to some prime quotient h�

i

j

B

; �

0

j

B

i. Since I[�

0

j

B

; �

0

j

B

]

is complemented and modular, we can project in two steps from �j

B

=�j

B

to �

0

j

B

=�

i

j

B

:

�j

B

=�j

B

& �=� % �

0

j

B

=�

i

j

B

for some congruences �; � 2 Con(Cj

B

). Necessarily i is good, so Lemma 4.2 (3) proves that

�

0

=�

i

% �

i

=�

i

. Therefore, we even have that

�j

B

=�j

B

& �=� % �

i

j

B

=�

i

j

B

:

Set �̂ = Cg

C

(�) and let �̂ be the largest congruence on C for which �̂ � �̂ and �̂j

B

= �.

Then, since � � �, �

i

� �

i

and restriction to B is a lattice homomorphism, we get that

�=� & �̂=�̂ % �

i

=�

i

in Con(C). This forces

Sep(�; �) = Sep(�̂; �̂) = Sep(�

i

; �

i

)

and �nishes the proof of (3).

Now we prove part (3) of Theorem 4.1.

LEMMA 4.6 Assume the hypotheses of Theorem 4.1.

(3) Every member U ofM is a minimal set with respect to each centralized quotient. The

body and the tail of U are the same with respect to all centralized quotients.
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Proof. We proved in Lemma 4.5 that Sep(�; �) = Sep(�

0

; �

0

) when h�; �i is centralized.

It follows that M

C

(�; �) = M

C

(�

0

; �

0

); therefore, a set is a minimal set for one central-

ized quotient if and only if it is a minimal set for all centralized quotients. It follows that

M

C

(�; �) =M. The second part of this lemma follows from Lemma 2.11 (7).

We are at a point where it is possible to identify exactly which quotients are centralized

and which are not. In the next lemma, let �

0

be the congruence on C which is the join of all

congruences � such that �

0

� � � �

0

.

LEMMA 4.7 The following are true of �

0

.

(1) h�

0

; �

0

i is tame of type 2 .

(2) M

C

(�

0

; �

0

) =M.

(3) The h�

0

; �

0

i{body of any U 2 M is the same as the h�; �i{body for any centralized

quotient h�; �i.

(4) �

0

j

U

= �

0

j

U

for all U 2 M.

(5) Every type 2 prime quotient in the interval I[�

0

; �

0

] is centralized. Every centralized

quotient is perspective with one in the interval I[�

0

; �

0

]. No centralized quotient is

contained in I[�

0

; �

0

].

Proof. The following observation will be useful in this proof.

Claim 1. For any U 2 M, the mappings � 7! �j

U

and � 7! Cg

C

(�

0

[�) are inverse bijections

between f� 2 Con(C)

�

�

� �

0

� � � �

0

g and f� 2 Con(Cj

U

)

�

�

� �

0

j

U

� � � �

0

j

U

g.

Proof of Claim 1. Choose a congruence � such that �

0

� � � �

0

and a U 2 M. By

Lemma 4.3 (1), the quotient h�

0

; �i is centralized. Hence, U 2 M

C

(�

0

; �) and so �

0

j

U

< �j

U

.

This implies that �

0

j

U

� �j

U

. Since restriction to U is a lattice homomorphism of I[�

0

; �

0

]

onto I[�

0

j

U

; �

0

j

U

], we must have that distinct covers of �

0

restrict to distinct covers of �

0

j

U

.

It is clear that �

0

< Cg

C

(�

0

[ �j

U

) � �; so Cg

C

(�

0

[ �j

U

) = � since �

0

� �.

To �nish, we must show that any cover of �

0

j

U

in I[�

0

j

U

; �

0

j

U

] is the restriction of a cover

of �

0

in I[�

0

; �

0

]. Choose � so that �

0

j

U

� � � �

0

j

U

. For � = Cg

C

(�

0

[ �), we clearly have

�

0

< � � �

0

. Choose some congruence � with �

0

� � � � . Then

�

0

j

U

� �j

U

� � j

U

= �;

since we have shown that covers of �

0

restrict to covers of �

0

j

U

. But then �j

U

= �, since �

covers �

0

j

U

. Claim 1 is proven.

Lemmas 4.4 and 4.5 (3) prove that

Sep(�

0

; �

0

) = Sep(�

0

; �

0

) = Sep(�; �)

for any centralized h�; �i. Hence, M

C

(�

0

; �

0

) = M

C

(�; �) = M, proving (2). It now follows

that any member of M

C

(�

0

; �

0

) is the image of an idempotent polynomial. To prove that

22



h�

0

; �

0

i is tame we must verify that the restriction map from I[�

0

; �

0

] to I[�

0

j

U

; �

0

j

U

] is 0,1{

separating for any U 2 M.

If restriction was not 0{separating, then we would have �

0

j

U

= �j

U

for some � satisfying

�

0

� � � �

0

. Claim 1 shows that this does not happen, so restriction is 0{separating. Choose

� such that �

0

� � � �

0

. From the de�nition of �

0

, there is a congruence � such that � � � � �

0

where � 6� �. We get that �=�

0

% �

0

=�. Hence, if �j

U

= �

0

j

U

we also have �

0

j

U

= �j

U

which

is false. Thus, �j

U

6= �

0

j

U

for any lower cover of �

0

in I[�

0

; �

0

]. This proves that restriction is

1{separating. We get that h�

0

; �

0

i is tame. Since I[�

0

; �

0

] is a solvable interval containing �

0

,

it must be that typ(�

0

; �

0

) 2 f1 ;2 g. But, we showed in Lemma 4.3 that for any � such that

�

0

� � � �

0

we have typ(�

0

; �) = 2 . Hence, I[�

0

; �

0

] is not strongly solvable. We infer that

typ(�

0

; �

0

) = 2 . This proves (1).

Parts (1) and (2) of this lemma combine with part (7) of 2.11 to establish (3).

We now prove (5). Let h�; �i be an arbitrary centralized quotient, choose U 2 M and let

B be the body of U . By Lemma 4.5 (2), the interval I[�

0

j

B

; �

0

j

B

] is a complemented modular

lattice. We have �j

B

< �j

B

, since U 2 M

C

(�; �). Hence, there is a congruence � 2 Con(Cj

B

)

which is a complement to �j

B

in I[�

0

j

B

; �j

B

]. By Claim 1, � is the restriction to B of some

� 2 Con(C) with �

0

� � � �

0

. It follows that �=�

0

% �=�. This proves the part of (5) which

asserts that every centralized quotient is perspective with one in the interval I[�

0

; �

0

]. It also

proves that no centralized quotient is contained in I[�

0

; �

0

]; since no prime quotient in this

interval is perspective with any �=�

0

when �

0

� � � �

0

. To �nish the proof of (5) we must

explain why every type 2 prime quotient in the interval I[�

0

; �

0

] is centralized.

Theorem 7.7 (4) of [6] shows that I[�

0

; �

0

]=

ss

� is a modular lattice. Since the atoms of this

lattice join to the top element, then every element of this lattice is a join of atoms. This implies

that every prime quotient in I[�

0

; �

0

]=

ss

� is perspective with one of the form (�=

ss

�)=(�

0

=

ss

�)

for some � satisfying �

0

� � � �

0

. It then follows from Lemma 6.5 of [6] that any type 2

prime quotient in the interval I[�

0

; �

0

] is perspective with a centralized quotient of the form

h�

0

; �i. If h�; �i is a type 2 prime quotient in the interval h�

0

; �

0

i and U 2 M

C

(�; �) = M,

then as noted earlier the h�; �i{body and tail of U are the same as they would be for any

centralized quotient. It follows from Lemma 2.11 (6) that 


0

j

U

� B

2

[ T

2

for this body and

tail and so to prove that C(


0

; �; �) it su�ces, by Lemma 2.6, to observe that

[


0

; �] � [


0

; �

0

] � �

0

� �:

This �nishes the proof of (5).

Claim 2. Whenever �

0

� � � � � �

0

and �j

U

< �j

U

for some U 2 M, then h�; �i is

centralized.

Proof of Claim 2. To see this, we argue �rst that U 2 M

C

(�; �). Since �j

U

< �j

U

,

it is clear that U contains a h�; �i{minimal set. (In more detail, if e 2 E(C) is such that

e(C) = U , then e(�) 6� �, so U = e(C) contains a h�; �i{minimal set.) However, if V � U

is a h�; �i{minimal set properly contained in U and f 2 E(C) is such that f(C) = V , then

f 62 Sep(�

0

; �

0

) = Sep(�

0

; �

0

). Hence f 62 Sep(�; �). But this is impossible since f(�j

V

) 6� �.

We conclude that U 2 M

C

(�; �). Since U is already known to be minimal with respect to

some centralized quotient, it follows that typ(�; �) = 2 and that the h�; �i{body and tail is

the same as it would be for any centralized quotient. Hence, 


0

j

U

� B

2

[T

2

for this body and

23



tail. The proof that C(


0

; �; �) holds is the same as in the paragraph preceding the statement

of Claim 2.

Now (4) follows from Claim 2 and the part of (5) which states that no centralized quotient

is contained in I[�

0

; �

0

]. This �nishes the proof of the lemma.

Parts (4) and (5) of Theorem 4.1 are now easy to prove.

LEMMA 4.8 Assume the hypotheses of Theorem 4.1.

(4) If U 2 M and f is a unary polynomial of C satisfying f(�

0

j

U

) 6� �

0

, then f(U) 2 M,

and f is a polynomial isomorphism of U onto f(U).

(5) Let U 2 M, M be the intersection of the body of U with a class of �

0

, C = C=�

0

,

and M the image of M in this factor. Then Cj

M

is polynomially equivalent to a

vector space over K of dimension at most k. For every n{ary polynomial f of C, the

set f(M; : : : ;M) is a coordinatizable E{trace of C with respect to M

`

for some ` � n.

Proof. By Lemma 4.7, �

0

j

U

= �

0

j

U

; so (4) is simply a restatement of Theorem 2.8 (3)

of [6] for the tame quotient h�

0

; �

0

i.

Now we prove (5). Since �

0

j

U

= �

0

j

U

, the set M is simply an h�

0

; �

0

i{trace of U . Clearly,

Cj

M

is isomorphic to (Cj

M

)=(�

0

j

M

) which is polynomially equivalent to a vector space since

h�

0

; �

0

i is tame of type 2 . The dimension of this vector space is the same as the height of

the lattice I[�

0

j

M

; �

0

j

M

] = I[�

0

j

M

; �

0

j

M

]. But the latter lattice is a homomorphic image of

I[�

0

j

B

; �

0

j

B

] by Lemma 2.4 of [6]. We proved in Lemma 4.5 that I[�

0

j

B

; �

0

j

B

] is a comple-

mented modular lattice where �

0

j

B

= \

k

i=1

�

i

j

B

. Since each �

i

j

B

is either equal to �

0

j

B

or a

coatom in I[�

0

j

B

; �

0

j

B

], we get that �

0

j

B

is a meet of at most k coatoms in I[�

0

j

B

; �

0

j

B

]. This

proves that the height of I[�

0

j

B

; �

0

j

B

] (and therefore of I[�

0

j

M

; �

0

j

M

]) is at most k.

Let K

0

denote the �eld over which (Cj

M

)=(�

0

j

M

) is a vector space. If i is good, then

�

i

j

B

� �

0

j

B

= �

0

j

B

. Since M is an h�

0

; �

0

i{trace, and all traces are polynomially isomorphic,

�

i

j

M

� �

0

j

M

in Con(Cj

M

). Let M

0

denote the �

i

j

U

{class containing M and let e be an

idempotent polynomial of C with range U . Clearly, M

0

=�

i

is an E{trace of C=�

i

with

respect to (�

i

=�

i

) and e(x)=�

i

, since M

0

is an E{trace of C with respect to �

i

(> �

i

) and

e(x). Since �

i

� 


0

, we get �

i

j

U

� B

2

[ T

2

, and so M

0

� B. The fact that Cj

B

is Mal'cev

implies that

�

0

j

B

� �

i

j

B

= �

0

j

B

_ �

i

j

B

= (�

0

_ �

i

)j

B

= �

i

j

B

;

so M � M

0

and each element of M

0

is �

i

{related to an element of M . We conclude that

M=�

i

= M

0

=�

i

. In particular, M=�

i

is an E{trace of C=�

i

with respect to (�

i

=�

i

) and

e(x)=�

i

.

Now, (Cj

M

)=(�

0

j

M

) is a K

0

{space and �

i

j

M

= �

i

j

M

is a maximal congruence of Cj

M

above �

0

j

M

and so it follows that the algebra (Cj

M

)=(�

i

j

M

) is polynomially equivalent to a 1{

dimensionalK

0

{space. At the same timeM=�

i

is an E{trace with respect to (�

i

=�

i

) in C=�

i

which forces it to be a h0

C=�

i

; (�

i

=�

i

)i{trace. But C=�

i

�

=

A=� and (�

i

=�

i

) corresponds

to (�=�) under this isomorphism. The �eld associated with any h�; �i{trace is K, so we

have K

0

= K.

The coordinatizability of sets of the form f(M; : : : ;M) follows directly from Lemma 3.8.

This �nishes the proof of (5).
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Centralized quotients will play almost no role in the rest of this section, so now seems a

good time to present an example to justify the amount of attention we have paid them.

The structure of minimal sets of type 2 in subdirect powers would be easier to describe

if all type 2 prime quotients in the interval I[�

0

; �

0

] were centralized. Unfortunately, as the

next example witnesses, that is not always the case (however, recall Lemma 4.3 (2)).

Example. (Some quotients may not be centralized.) Our example has universe f0; 1; 2g and

a single basic operation, which is binary, and has the table

� 0 1 2

0 0 1 1

1 1 0 0

2 1 0 2

A is the algebra hf0; 1; 2g; �i. The only congruences of A are � = 0

A

, � = Cg(0; 1), and


 = 1

A

. It is not hard to check by hand or computer that C(
; �;�) holds. Furthermore,

typ(�; �) = 2 and the unique member of M

A

(�; �) is the set N = f0; 1g. We choose C to

equal A

2

. In this example, �

0

= 0

C

, �

0

= ��� and 


0

= 1

C

. C has twenty four congruences,

so we will not try to display them all. What interests us are the ten congruences in the

interval I[�

0

; �

0

]. Their relative positions are shown in Figure 3. All prime quotients shown

in this picture are of type 2 . In Figure 3, �

0

= � � � � �

0

.

u

u

u

u

u

u

u

u

u

u

�

0

�

0

�

0

�

�

Figure 3: I[�

0

; �

0

].

From Lemma 4.7 (5) we see that neither h�; �i nor h�; �

0

i is centralized even though they

both are prime quotients of type 2 which lie between �

0

and �

0

. To see that the minimal sets

corresponding to non{centralized quotients must be handled in a di�erent way, we note that

M

C

(�

0

; �

0

) =M = fN �Ng, M

C

(�; �) = fN �Ag, and M

C

(�; �

0

) = fA�Ng.

Now we resume the main line of our argument. Fix an element U 2 M and let B and

T be the h�

0

; �

0

i{body and tail, respectively. B is an E{trace of C and Cj

B

is Mal'cev

and E{minimal. Choose an idempotent polynomial e of C such that e(C) = U , denote

the components of e by e

1

; : : : ; e

k

and let U

i

= e

i

(A). Clearly, (e

1

; : : : ; e

k

) is a sequence of

simultaneousC{twins where each component is an idempotent polynomial ofA. Furthermore,

the idempotence of each e

i

implies that

U = C \ (U

1

� � � � � U

k

):
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Denote by B

i

and T

i

the image of B and T under the i{th projection. Since Cj

B

=�

i

j

B

is

isomorphic to Aj

B

i

, it follows that Aj

B

i

is Mal'cev and E{minimal.

LEMMA 4.9 We have U

i

2 M

A

(�; �) for all i. The body and tail of U

i

are B

i

and T

i

,

respectively.

Proof. Since e 2 Sep(�

0

; �

0

), we get that e

i

2 Sep(�; �) for at least one i. This implies

that e

i

2 Sep(�; �) for all i, since the e

i

are simultaneous C{twins, C � 


(k)

and 
 � (� : �).

From this it follows that each U

i

= e

i

(A) contains an h�; �i{minimal set. Assume that,

say, U

1

properly contains the h�; �i{minimal set V . Choose an idempotent polynomial f

1

of A such that f

1

(A) = V . Since C is a subdirect power of A, it is possible to choose a

polynomial f of C which has f

1

as its �rst component. Now ef(x) is a unary polynomial

of C whose �rst component is e

1

f

1

(x) = f

1

(x) 2 Sep(�; �). It follows that all components

of ef belong to Sep(�; �), since they are simultaneous C{twins. Choose a good i and then

pick (a;b) 2 �

0

� �

i

. Since (a

i

; b

i

) 2 � �� and e

i

f

i

(�) 6� �, there exists a unary polynomial

g

i

of A such that (e

i

f

i

g

i

(a

i

); e

i

f

i

g

i

(b

i

)) 2 ���. We can lift g

i

(x) to a unary polynomial g(x)

of C whose i{th component is g

i

, since C � A

k

is subdirect. For this g we have

(efg(a); efg(b)) 2 �

0

j

U

� �

i

� �

0

j

U

� �

0

= �

0

j

B

� �

0

:

It follows that efg(C) contains an h�

0

; �

0

i{minimal set. But efg(C) is properly contained

in the minimal set e(C) = U , since e

1

f

1

g

1

(A) � V � U

1

. This contradicts the minimality

of e(C) = U . The conclusion is that each U

i

is a member of M

A

(�; �).

We now prove that �

i

j

B

< �

i

j

B

for each coordinate i. Select a coordinate j at random.

Since U

j

2 M

A

(�; �), it follows from the de�nition of U

j

that there exist c;d 2 U such

that (c

j

; d

j

) 2 �j

U

j

� �. This means that (c;d) 2 �

j

j

U

� �

j

. In particular, it means that

�

j

j

U

< �

j

j

U

and so U contains an h�

j

; �

j

i{minimal set. We claim that U 2 M

C

(�

j

; �

j

). To

see this, choose an idempotent unary polynomial f such that

f(C) = ef(C) = V � U

and V 2 M

C

(�

j

; �

j

). Since f = ef 2 Sep(�

j

; �

j

), we must have e

j

f

j

2 Sep(�; �). This

implies that all coordinates of ef are in Sep(�; �). Thus, each e

i

f

i

(A) contains an h�; �i{

minimal set and is at the same time contained in U

i

. We conclude that f

i

(A) = e

i

f

i

(A) =

U

i

= e

i

(A) for all i. Hence,

U = e(C) = C \ (e

1

(A)� � � � � e

k

(A)) = C \ (f

1

(A)� � � � � f

k

(A)) = f(C) = V:

This proves that U 2 M

C

(�

j

; �

j

). By Lemma 4.2 (1), the quotient h�

j

; �

j

i is of type 2 . From

Lemma 2.11 (7) we get that the h�

i

; �

i

i{body and tail of U are B and T , respectively; which

implies that �

i

j

B

< �

i

j

B

.

We now show that B

i

and T

i

are the body and tail of U

i

, respectively. If c is in the body

of U

i

, then there is some element d also in the body with (c; d) 2 � � �. Since U

i

is the

projection of U onto its i{th component, there are elements a and b 2 U with a

i

= c and

b

i

= d. Then (a;b) 2 �

i

j

U

��

i

j

U

and so both of these elements lie in B, the body of U . This

shows that a

i

= c is in B

i

.
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For the converse, suppose that c is a member of B

i

. Then there is some a in B with

a

i

= c. Being a member of B means that there is some b also in B with (a;b) 2 �

i

� �

i

.

Then b

i

belongs to U

i

and (a

i

; b

i

) 2 � � �. This shows that a

i

= c is a member of the body

of U

i

.

We have shown that the body of U

i

equals B

i

. To prove that the tail of U

i

is T

i

, it will

su�ce to show that fB

i

; T

i

g is a partition of U

i

. The fact that U

i

= B

i

[ T

i

follows from the

way B

i

and T

i

were de�ned. Assume that B

i

\ T

i

6= ;. Then we can �nd b 2 B and t 2 T

such that b

i

= t

i

. This implies that (b; t) 2 B � T and that

(b; t) 2 �

i

j

U

� 


0

j

U

� (� : �)j

U

where h�; �i is an arbitrarily chosen centralized quotient. But U 2 M

A

(�; �), therefore (by

Lemma 2.11 (6)) B is a (� : �)j

U

{class. Now the last displayed line implies that b 2 B ,

t 2 B. Thus, we cannot have (b; t) 2 B � T , after all. This completes the proof.

One consequence of Lemma 4.9 is that B = C\(B

1

�� � ��B

k

) and T = C\(T

1

�� � ��T

k

).

To see this, notice that C \ (B

1

� � � � �B

k

) and C \ (T

1

� � � � �T

k

) are disjoint, in the range

of e, and that the �rst set contains B while the second contains T .

Now we prove the last part of Theorem 4.1.

LEMMA 4.10 Assume the hypotheses of Theorem 4.1.

(6) The elements of M are exactly the sets of the form U = C \ (e

1

(A) � � � � � e

k

(A)),

where (e

1

; : : : ; e

k

) is a sequence of simultaneous C{twins and each e

i

is an idempotent

polynomial of A with e

i

(A) 2 M

A

(�; �). The body and tail of U are of the form

C \ (B

1

� � � � � B

k

) and C \ (T

1

� � � � � T

k

), respectively, where B

i

and T

i

are the

h�; �i{body and tail of e

i

(A).

Proof. The element U 2 M which we �xed prior to Lemma 4.9 has the prescribed

structure. Since U was chosen arbitrarily, all elements of M are of this form. Furthermore,

as we remarked just before this lemma, the body and tail of U are as claimed. What is left

to show is that if (e

1

; : : : ; e

k

) is a sequence of simultaneous C{twins and e

i

(A) 2 M

A

(�; �)

for each i, then C \ (e

1

(A)� � � � � e

k

(A)) 2 M.

The function e(x) is a unary polynomial of C, since (e

1

; : : : ; e

k

) is a sequence of sim-

ultaneous C{twins. Furthermore, each e

i

belongs to Sep(�; �). This is enough to force

e 2 Sep(�

0

; �

0

). To see this, choose (a;b) 2 �

0

��

0

. Assume that, say, (a

i

; b

i

) 2 ���. There

is a unary polynomial g

i

such that (e

i

g

i

(a

i

); e

i

g

i

(b

i

)) 2 � � �. Let g be a unary polynomial

of C which has g

i

as its i{th component. Then (c;d) = (eg(a); eg(b)) 2 �

0

� �

0

. Since

(e(c); e(d)) = (c;d), we get e 2 Sep(�

0

; �

0

).

Let U be a member of M which is contained in e(C). Let f be an idempotent unary

polynomial of C for which f(C) = U . By the �rst part of this proof, f

i

(A) 2 M

A

(�; �) for

all i. But f

i

(A) � e

i

(A) = U

i

2 M

A

(�; �) for all i, since f(x) = ef(x). We must have

f

i

(A) = e

i

(A) = U

i

for all i. Hence,

U = f(C) = C \ (U

1

� � � � � U

k

) = e(C)

which proves that e(C) 2 M

C

(�

0

; �

0

).
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To conclude we summarize the results from this section in the case we are dealing with

a �nite simple abelian algebra. In this case, we obtain a precise description of all type 2

minimal sets in subpowers of A.

COROLLARY 4.11 LetA be a �nite simple abelian algebra and letC be a �nite subdirect

power of A. Let M be the collection of all subsets of C which are minimal with respect to

at least one prime quotient of C of type 2 . Let K denote the �nite �eld such that A induces

a 1-dimensional K-vector space structure on each of its minimal sets. The following hold:

(1) M is nonempty and every member ofM is minimalwith respect to every prime quotient

of C of type 2 .

(2) Each U in M has an empty tail with respect to every type 2 prime quotient and Cj

U

is polynomially equivalent to a vector space over K.

(3) If U 2 M and f is a unary polynomial of C which is nonconstant on U , then f(U) 2 M

and f is a polynomial isomorphism of U onto f(U). If f is an n-ary polynomial of C

then f(U; : : : ; U) is a coordinatizable E{trace of C with respect to U

l

for some l � n.

(4) The elements of M are exactly the sets of the form U = C \ (e

1

(A) � � � � � e

k

(A)),

where (e

1

; : : : ; e

k

) is a sequence of simultaneous C{twins and each e

i

is an idempotent

polynomial of A with e

i

(A) a minimal set of A.

(5) If �

0

is the join of all of the atoms in ConC then the interval I[0

C

; �

0

] is tame of type

2 and the interval I[�

0

; 1

C

] is strongly solvable.

5 Minimal locally solvable varieties

A variety is called minimal (or equationally complete) if it is nontrivial, but its only proper

subvariety is trivial. Every nontrivial variety contains a nontrivial simple algebra, so every

minimal variety is generated by a simple algebra. A minimal locally �nite variety is generated

by a strictly simple algebra. We recommend [18] to the reader interested in a survey of strictly

simple algebras and minimal locally �nite varieties.

If a strictly simple generator of a minimal variety is nonabelian, then every member of the

variety is nonabelian; in fact, nonsolvable. If the generator is abelian, every member of the

variety is guaranteed to be locally solvable. Thus, minimal locally �nite varieties are either

locally solvable or they contain no solvable algebras. In this section we describe all minimal,

locally �nite, locally solvable varieties. Here is our result.

THEOREM 5.1 Let V be a locally �nite, locally solvable variety. Then V is minimal if

and only if one of the following possibilities holds.

(1) V is term equivalent to a matrix power of the variety of sets with no operations, or to

the variety of sets with one constant operation. In this case V is strongly abelian.

(2) V is a�ne (in particular, it is congruence permutable), and is generated by a �nite,

simple algebra that is polynomially equivalent to a module over a �nite ring, and has

a 1{element subalgebra.
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The structure of the varieties described in (2) is well{known (see Freese{McKenzie [3],

Theorem 12.4), and it is proved there that such varieties are indeed minimal (all subdirectly

irreducible algebras are isomorphic to the generator). In view of Theorem 3.4 (6), the varieties

given in (1) are also minimal, since the variety of sets and the variety of pointed sets are

obviously minimal. By the same theorem, the statement in (1) is equivalent to saying that

V is generated by a �nite simple algebra that is term equivalent to a matrix power of the

2{element set or of the 2{element pointed set.

As promised in the Introduction, we give three di�erent proofs of case (2) in this paper

(and one proof of case (1)). Still more proofs of Theorem 5.1 are known. For instance,

�

Agnes Szendrei discovered a di�erent proof independently and at about the same time that

we discovered ours. Her results appear in [19] and [16] for the type 1 and type 2 cases,

respectively. Three years later, Szendrei and the �rst author discovered two more proofs of

this theorem. (One proof and the outline of the second can be found in [9].) The reader will

�nd one proof of the type 2 case in the next section, two in this one. The di�erence between

the two arguments here is that one uses the theory of minimal sets in subdirect powers, the

other one does not. This di�erence occurs only in the proof of the following key lemma (which

also applies in the type 1 case, but we only have one proof of that).

LEMMA 5.2 Let A be a �nite, simple, abelian algebra generating a minimal variety V.

Then for each nonconstant, idempotent polynomial e of A there exists a binary polynomial

s(x; y) of A and a trace N � T = e(A) of A satisfying the following conditions.

(i) s(A;A) � T .

(ii) s(N;T ) = T .

(iii) js(t; T )j < jT j for a suitable (that is, all) t 2 T .

Proof. First we explain statement (iii) of the lemma. Suppose that js(t; T )j < jT j for

a suitable t 2 T . Then the mapping x 7! s(t; x) is not a bijection on T , so we have s(t; t

1

) =

s(t; t

2

) for some t

1

; t

2

2 T . As A satis�es the term condition, we have s(t

0

; t

1

) = s(t

0

; t

2

) for

every t

0

2 T . As T is �nite, this indeed implies js(t

0

; T )j < jT j.

Our �rst argument works only for the case when typfAg = f2 g. We shall use the theory

of minimal sets in subdirect powers. Consider a listing t = (t

1

; : : : ; t

k

) of the elements of T

and let C be the subalgebra of A

k

generated by the diagonal and the element t. As A is

simple and abelian, Corollary 4.11 applies for A and C. From Corollary 4.11 (5) we know

that if �

0

is the join of all of the atoms in ConC then the interval I[�

0

; 1

C

] is strongly solvable

and the interval I[0

c

; �

0

] is tame of type 2 . It follows that C=�

0

is strongly solvable. But the

locally strongly solvable algebras of V form a subvariety W by Corollary 7.6 of [6]. A is not

inW, since its type is 2 , and so W must be trivial. Therefore C=�

0

is the trivial algebra and

we must have �

0

= 1

C

. We conclude that the algebra C is tame of type 2 . In particular, any

two elements of C are connected by a chain of minimal sets. The collection of these minimal

sets is called M in Section 4 and their structure is described in Corollary 4.11 (4).

For c 2 A, let ĉ denote the element (c; : : : ; c) of C. Fix some element t from T . Since

jT j > 1, t and

^

t are two di�erent elements. Connect t to

^

t with a chain of members of M.

Let ê denote the (idempotent) unary polynomial of C that acts as e in every component.
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Apply ê to the elements of this chain. Since every element of the chain is a minimal set of

the tame algebra C, then on any given element of the chain, e is either constant or it maps

that element onto another member of M. We get another chain of elements of M running

entirely in T

k

which connects ê(t) = t to ê(

^

t) =

^

t. In particular, there exists a V 2 M such

that t 2 V � T

k

.

Since V is a minimal set, we obtain that there exists an idempotent unary polynomial f

of C satisfying f(C) = V . Since C is generated by the diagonal and the element t, we may

express f as

f(x) = g

C

(x; t; ĉ

1

; : : : ; ĉ

m

)

for some term g and elements c

i

from A. Let s(x; y) = eg

A

(x; y; c

1

; : : : ; c

m

). Clearly, s is a

binary polynomial of A. The construction of s ensures that for every x 2 C we have

f

i

(x

i

) = s(x

i

; t

i

) ;

where f

i

is the i{th component function of f . As f is idempotent and C contains the diagonal,

we have s(s(x; t

i

); t

i

) = s(x; t

i

) for each x 2 A. From the abelian property of A we get that

s(s(x; t

i

); z) = s(x; z) holds for all z; t

i

2 T .

Corollary 4.11 (4) states that we have ê(C) � V = C \ (N

1

� : : :�N

k

) for some minimal

sets N

i

� e(A) = T of A. We show that s satis�es the conditions of the lemma with N = N

1

.

Condition (i) holds, since g is pre�xed by e in the de�nition of s. From f(C) = V and t 2 V

we see that t

i

2 N

i

= s(A; t

i

). By the equality above,

s(N

1

; t

j

) = s(s(A; t

1

); t

j

) = s(A; t

j

) = N

j

for every 1 � i; j � k. In particular, s(N

1

; T ) = T , implying (ii). To prove (iii) assume that

s(t; T ) = T for some t 2 T . Then

N

1

= s(N

1

; t

1

) � s(T; t

1

) = s(s(t; T ); t

1

) = fs(t; t

1

)g;

which is our �nal contradiction.

This was the proof of the lemma for the type 2 case using the theory of minimal sets in

subdirect powers. We included this argument to demonstrate the usefulness of this theory.

Now we present our \elementary" proof. Note that in the above argument we used only that

the locally strongly solvable subvariety of V is trivial. Here we shall use the minimality of V

in a di�erent way. We do not distinguish between type 1 and type 2 until the end of the

argument.

First note that T = e(A) contains a trace N of A. Indeed, e is not constant, and therefore

its range contains a minimal set, that is, a trace.

Let N = p(A), where p(x) = r

A

(x; d

1

; : : : ; d

`

) is an idempotent polynomial and r is a

term of A. Then A does not satisfy the identity r(x; z

1

; : : : ; z

`

) = r(y; z

1

; : : : ; z

`

), since we

can choose x; y 2 N to be di�erent, and z

i

= d

i

. Hence, the subvariety of V de�ned by

this identity is trivial. Now, assume that C 2 V is any �nite algebra, having a congruence

� 6= 1

C

, and elements s

1

; : : : ; s

`

such that r

C

(x; s

1

; : : : ; s

`

) � r

C

(y; s

1

; : : : ; s

`

) for all x; y 2 C.

Taking a maximal congruence  of C containing �, the simple algebra S = C= is abelian

and satis�es

8x; y(r

S

(x; �s

1

; : : : ; �s

`

) = r

S

(y; �s

1

; : : : ; �s

`

)):
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Using the term condition we get that S is a nontrivial algebra satisfying the equation

r(x; z

1

; : : : ; z

`

) = r(y; z

1

; : : : ; z

`

) :

This is impossible, since this equation together with the equations of V de�ne the trivial

variety. We conclude that there is no �nite C 2 V having a congruence � 6= 1

C

, and elements

s

1

; : : : ; s

`

such that r

C

(x; s

1

; : : : ; s

`

) � r

C

(y; s

1

; : : : ; s

`

) for all x; y 2 C.

Again let t = (t

1

; : : : ; t

k

) be a listing of the elements of T , and C the subalgebra of A

k

generated by the diagonal and the element t. Let U = N

k

\C, and denote by � the smallest

congruence of C collapsing U . Since p(x) = r

A

(x; d

1

; : : : ; d

`

) and p(A) = N , then we have

r

C

(x;

^

d

1

; : : : ;

^

d

`

) � r

C

(y;

^

d

1

; : : : ;

^

d

`

) for all x; y 2 C. By the remarks in the previous paragraph,

the minimality of V implies that � = 1

C

. Thus, the images of U under the unary polynomials

of C connect the elements of C.

Notice that we had a similar statement in the previous proof. We now have it for type 1

as well. The next few steps of the proof are the same as above, but we now know less about

the polynomial images of U (in particular, we do not know if they can be obtained as the

range of an idempotent polynomial), so we have to do more calculations.

Connect the element t to

^

t = (t; : : : ; t), where t is some �xed element of T , with a chain

of polynomial images of U . These are two di�erent elements, since jT j > 1. Let ê denote

the (idempotent) unary polynomial of C that acts as e in every component. Apply ê to the

elements of this chain. We get another chain of polynomial images of U contained entirely

in T

k

. In particular, there exists a unary polynomial f of C such that V = f(U) has at least

two elements and satis�es t 2 V � T

k

.

Since C is generated by the diagonal and the element t we may express f as

f(x) = g

C

(x; t; â

1

; : : : ; â

m

)

for some term g and elements a

i

from A. Let s(x; y) = eg

A

(x; y; a

1

; : : : ; a

m

). Clearly, s is a

binary polynomial of A. The construction of s ensures that for every x 2 C we have

f

i

(x

i

) = s(x

i

; t

i

) ;

where f

i

is the i{th component function of f .

We have an element u 2 U such that f(u) = t, that is, s(u

i

; t

i

) = t

i

for every 1 � i � k.

Since u

i

2 N , this implies that t 2 s(N; t) for every t 2 T , hence s(N;T ) � T . On the other

hand, g is pre�xed by e in the de�nition of s, so we have s(A;A) � T . Thus s satis�es (i)

and (ii).

Now we have to split the proof into two cases according to the type of A. First suppose

that this type is 1 . As f is not constant on U , there exist elements n

1

; n

2

2 N and x 2 T such

that s(n

1

; x) 6= s(n

2

; x). But A is strongly abelian, so this implies that s(n

1

; x) 6= s(n

2

; y)

for every y 2 T . That is, s(n

1

; T ) is contained in T � s(n

2

; T ), and therefore we have

condition (iii) with t = n

2

.

In the type 2 case we transform s in three steps to get a new binary polynomial that still

satis�es conditions (i) and (ii), but satis�es (iii) as well. As f is not constant on U , there

exist elements n

1

; n

2

2 N and 0 2 T such that s(n

1

; 0) 6= s(n

2

; 0). Hence, M = s(N; 0) is
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a trace of A, which contains 0 (since t 2 s(N; t) for every t 2 T ). Let q be a polynomial

inverse of s(x; 0) mapping M to N and satisfying q(A) = q(M) = N . Set

s

1

(x; y) = s(q(x); y) :

Then s

1

(x; 0) = x for all x 2 M , so s

1

(M; 0) = s

1

(A; 0) = M . We also have t 2 s

1

(M; t)

for every t 2 T . Thus, s

1

satis�es conditions (i) and (ii) with respect to M instead of N .

Thus, if s

1

(0; y) is not a permutation of T , then we are done because (iii) will be satis�ed

with t = 0. Otherwise, consider a power h(y) of this permutation, which is its inverse on the

set T . Set

s

2

(x; y) = s

1

(x; h(y)) :

By the de�nition of h we have s

2

(0; y) = y for all y 2 T . As h is a permutation of T , it maps

T onto T , so s

2

(M;T ) = s

1

(M;h(T )) = s

1

(M;T ) = T . From 0 2M we get that s

1

(0; 0) = 0,

so the element 0 is a �xed point of s

1

(0; y), hence h(0) = 0. Therefore s

2

(x; 0) = x holds for

all x 2M , and we have s

2

(A; 0) = s

2

(M; 0) =M .

Let + denote the (polynomial) addition onM with zero element 0. We show that for each

x; y 2M we have s

2

(x; y) = x+ y. (This follows easily from the fact that A is quasi{a�ne,

but the following argument is simpler and more elementary.) We apply the term condition.

From

s

2

(0 + 0; y) = y = s

2

(0 + y; 0)

we obtain, by changing the �rst zero to x, that

s

2

(x+ 0; y) = s

2

(x+ y; 0) = x+ y ;

since x+ y 2M .

Finally, let e

0

(x) = s

2

(x; 0), this is an idempotent polynomial of A with range M . Set

s

3

(x; y) = s

2

(e

0

(x)� e

0

(y); y) :

We show that s

3

satis�es all three conditions. Obviously, s

3

(A;A) � T . If t 2 T , then

t = s

2

(m; t

0

) for some m 2 M and t

0

2 T . Let m

0

= e

0

(t

0

) +m, then s

3

(m

0

; t

0

) = s

2

(e

0

(t

0

) +

m � e

0

(t

0

); t

0

) = s

2

(m; t

0

) = t, so we have s

3

(M;T ) = T . Finally if x; y 2 M , then we have

s

3

(x; y) = s

2

(x � y; y) = (x � y) + y = x, showing that s

3

(0;M) = f0g. Therefore s

3

(0; x)

is not a permutation of T and so s

3

(0; T ) 6= T , as T is �nite. Thus, all proofs of Lemma 5.2

are complete.

LEMMA 5.3 Let A be a �nite, simple, abelian algebra generating a minimal variety V.

Then A is coordinatizable by traces.

Proof. Let T be minimal among all E{traces of A that are not coordinatizable by

traces, and let T = e(A) for an idempotent polynomial e of A. Consider the trace N and

binary polynomial s provided by Lemma 5.2 for this T . Iterate s in its second variable so

that it becomes idempotent. If this happens in m steps, then let

g(x

1

; : : : ; x

m

; y) = s(x

1

; s(x

2

; : : : s(x

m

; y) : : :)) ;
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and h(x; y) = g(x; : : : ; x; y). Pick t 2 T arbitrarily. Then f(x) = h(t; x) is an idempotent

polynomial of A. Let R = f(A). As s(A;A) � T we have R � T . As s(t; T ) is a proper

subset of T , by the properties of s, the de�nitions of g and h show that R is a proper subset

of T . On the other hand, s(N;T ) = T implies that g(N; : : : ;N; T ) = T .

We show that g(N; : : : ;N;R) = T . Indeed, from h(x; h(x; y)) = h(x; y) we get that

g(x; : : : ; x; g(x; : : : ; x; y)) = g(x; : : : ; x; y) ;

so by applying the term condition we obtain that

g(x

1

; : : : ; x

m

; g(x; : : : ; x; y)) = g(x

1

; : : : ; x

m

; y) :

Thus g(N; : : : ;N; T ) = g(N; : : : ;N; h(t; T )) as stated.

By the minimality of T we know that R is coordinatizable by traces. This means that

R = p(M; : : : ;M) for some polynomial p and trace M of A. As M and N are polyno-

mially isomorphic, we may assume that M = N (by changing p appropriately). Hence

T = g(N; : : : ;N; p(N; : : : ;N)), so by Lemmas 3.8 and 3.9, the set T is coordinatizable by

traces. This contradiction proves the lemma.

Finally we show that Theorem 5.1 follows from this lemma.

Proof of Theorem 5.1:

Let V be a locally �nite, locally solvable, minimal variety. Then V is generated by a �nite

simple solvable (and hence abelian) algebra A. If we put together Lemma 5.3 and Theorem

3.7 (2) we �nd that Aj

A

is term equivalent to (Uj

U

)

[k]

where U is either a �nite simple

vector space or a �nite simple algebra whose basic operations are all unary and permutations

of U and k is some natural number. Thus, we can assume that A is polynomially equivalent

to U

[k]

. This means that the universe of A will be assumed to be U

k

and it further entails

that the clone of A is contained in the clone of (Uj

U

)

[k]

.

In the case where U is a vector space we have that A is an abelian algebra which has a

Mal'cev polynomial. This says that A is polynomially equivalent to an a�ne algebra. But

an algebra polynomially equivalent to an a�ne algebra is a�ne itself as we now explain. Let

p(x; y; z) be a polynomial of A that interprets as x�y+z. If p(x; y; z) = t

A

(x; y; z; a

1

; : : : ; a

k

)

for some term t, then in fact

p(x; y; z) = t

A

(x; t

A

(y; y; y; y; : : : ; y); z; y; : : : ; y):

That is, the term t(x; t(y; y; y; y; : : : ; y); z; y; : : : ; y) interprets as x� y + z. One can see this

most easily by �rst representing t(x; y; z; �u) as a module polynomial for which t

A

(x; y; z;�a) =

x � y + z and then showing that the operation t

A

(x; t

A

(y; y; y; �u); z; �u) is independent of �u.

Now that we see that A is a�ne we can then rely on Theorem 12.4 of [3] to obtain part (2)

of our theorem.

In the case where U is unary it follows from the de�nition of the matrix power of an

algebra that all term operations of U

[k]

(and hence of A) depend on at most k variables.

This implies that any polynomial of A which depends on exactly k variables must in fact

be a term operation of A. In particular, since the clone of U

[k]

can be generated by k{ary

operations which depend on all of their variables it follows that the clone of A contains the

clone of U

[k]

. (Here it is essential that the basic operations of U are permutations.)
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If the unary term operations of U act transitively on U , then the unary term operations

of U

[k]

will act transitively on U

k

. In this case, the clone of (Uj

U

)

[k]

covers the clone of U

[k]

in the lattice of clones on U

k

. The clone A must equal one or the other of these clones since it

contains one clone and is contained in the other. Thus, when the terms of U act transitively,

then A is term equivalent to either U

[k]

or to (Uj

U

)

[k]

.

The algebrasU andUj

U

do not generate minimal varieties when the unary term operations

ofU act transitively on U (the subvariety de�ned by the equations t(x) � x for all nonconstant

unary terms t is nontrivial); hence their matrix powers cannot either. Thus, in this case, A

can't generate a minimal variety since term equivalence preserves this property.

We are reduced to considering the case where U is a 2{element algebra with no basic

operations and the clone ofA contains the clone ofU

[k]

but is contained in the clone of (Uj

U

)

[k]

.

However, there are only four clones on the set U

k

which contain the clone of U

[k]

and are

contained in the clone of (Uj

U

)

[k]

. If we let U = f0; 1g, then the four clones are the clones of

� hf0; 1g; ;i

[k]

,

� hf0; 1g; 0i

[k]

,

� hf0; 1g; 1i

[k]

, and

� hf0; 1g; 0; 1i

[k]

.

(It takes a small calculation to see that there are no other clones in this interval.) A is term

equivalent to one of these four algebras. The second and third are term equivalent to each

other. The fourth algebra on the list does not generate a minimal variety (since the equation

�

0 �

�

1 de�nes a nontrivial proper subvariety). Hence, A must be term equivalent to either

hf0; 1g; ;i

[k]

or hf0; 1g; 0i

[k]

.

To summarize, we have shown that the algebra A must either generate an a�ne variety

or must be term equivalent to a matrix power of a 2{element set or to a matrix power of a

2{element set with a single constant operation.

To conclude this section, we give a more detailed description of the minimal locally �nite

varieties of type 2 . We have shown that a minimal locally �nite variety of type 2 is a�ne

and has a 1{element subalgebra. This is already a good description of minimal varieties of

type 2 , but it is not as good a description as the one we have given for minimal varieties

of type 1 . In particular, Theorem 5.1 does not tell us what the clone of a minimal type 2

variety is.

Let A be a strictly simple algebra which generates a minimal variety of type 2 . Let S

denote the set of trivial subalgebras of A and choose some 0 2 S. If we expand A by adding

in all polynomials which preserve 0 as new basic operations, we obtain an a�ne algebra with

exactly one trivial subalgebra. Such an algebra is term equivalent to a �nite simple module,

B, with the same universe as A. The endomorphism ring End(B) is a �nite �eld which we

denote by F. If V is the universe of B, then V is a �nite{dimensional F{space and B is

isomorphic to the R{module structure on V where R = End

F

(V ). The algebras A and B

are polynomially equivalent, so the following theorem serves to describe the clone of A. The

proof of this theorem can be derived from Propositions 2.6 and 2.10 from [17].
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THEOREM 5.4 Let V be a �nite{dimensional vector space over the �eld F and let B

equal V considered as an R{module where R = End

F

(V ). Let A be any reduct of B which

is polynomially equivalent to B. Let S be the set of trivial subalgebras of A. The following

are true.

(1) S is a subspace of V .

(2) The clone of A consists precisely of those linear operations on V which preserve the

members of S.

(3) There is a left ideal J of R such that the clone of A consists precisely of those linear

operations on V , m

1

(x

1

) + � � �+m

r

(x

r

), which satisfy

m

1

+ � � �+m

r

� 1 (mod J):

(Here 1 denotes the identity element of R.)

By a reduct of an algebra C we mean any algebra with universe C whose clone of term

operations is a subset of the clone of term operations of C. In the following corollary an a�ne

module is an idempotent reduct of a module.

COROLLARY 5.5 A minimal, locally �nite a�ne variety is categorically equivalent to a

variety of vector spaces or a variety of a�ne modules.

Proof. A unary term �(x) for the variety V is said to be invertible in V if there

exists some n > 0, an n{ary term p(�x) and n unary terms q

1

; : : : ; q

n

such that V satis�es

p(�(q

1

(x)); : : : ; �(q

n

(x))) = x. If � is an idempotent term of V, then for A 2 V we writeA(�)

for the algebra with universe �(A) and whose basic operations are the operations of the form

��f j

�(A)

where f is a term of A. We write V(�) for the variety of algebras fA(�)

�

�

� A 2 Vg. It

is shown in [12] that if � is an idempotent term which is invertible in V, then V is categorically

equivalent to V(�).

If V is a minimal, locally �nite a�ne variety, then using Theorem 5.4 it is fairly easy to

show that any nonconstant idempotent term is invertible. (Just follow these steps:

(i) Let A be a strictly simple generator of V and choose q

1

; : : : ; q

m

2 Clo

1

(A) such that

f�q

1

; : : : ; �q

m

g separates the points of A.

(ii) Show that the left ideal of R generated by f�q

1

; : : : ; �q

m

g is R. In this step use the

fact, which we established in the proof of Theorem 5.4, that left ideals of R are just

the annihilators of subspaces of V .

(iii) If 1 = �m

i

�q

i

, then p(�x) = �m

i

(x

i

) 2 Clo

m

(A) by Theorem 5.4 (3) and so p and

q

1

; : : : ; q

m

are terms which witness that � is invertible.)

Now if A, the strictly simple generator of V, has more than one trivial subalgebra, then

the description of the clone of A given in Theorem 5.4 implies that A has a nonconstant

idempotent term whose range is the space of trivial subalgebras. If � is such a term, then

V(�) is an idempotent a�ne variety. That is, it is term equivalent to a variety of a�ne

35



modules. Since term equivalence is a categorical equivalence, we get that V is categorically

equivalent to a variety of a�ne modules in this case. In the other case A has exactly one

trivial subalgebra. We choose � to be any idempotent, invertible term whose range has vector

space dimension 1. The term operations of A(�) contain the vector space operations and are

all linear with respect to these operations. Hence,A(�) is term equivalent to a 1{dimensional

vector space. But A(�) generates V(�), so the latter is term equivalent to a variety of vector

spaces. This �nishes the argument.

Since the matrix power construction viewed as a functor V 7! V

[k]

is a categorical equival-

ence, the results of this section show that any minimal, locally �nite, locally solvable variety

is categorically equivalent to one of the following varieties:

� the variety of sets,

� the variety of pointed sets,

� a variety of vector spaces or

� a variety of a�ne modules over a �nite simple ring.

No two varieties on the list are categorically equivalent to each other; they can be categorically

distinguished by comparing the endomorphism monoids of A

2

where A is the unique simple

algebra in each variety.

We would like to point out that from the results from this section it is not hard to see

that every locally �nite minimal abelian variety is !-categorical. A class of algebras is !-

categorical if up to isomorphism there is a single countably in�nite algebra in the class. What

is perhaps more interesting is that our results can be used to provide another proof of the

classi�cation of !-categorical varieties, since it is not di�cult to show that such a variety

must be locally �nite, abelian and minimal (see Theorem 4.1 of [8]). !-categorical varieties

and quasivarieties have also been extensively studied in [4, 5, 15, 14].

6 TSSS varieties

We will call a locally �nite variety with trivial locally strongly solvable subvariety a TSSS

variety. Examples of TSSS varieties include all locally �nite varieties which satisfy a non-

trivial special Mal'cev condition as well as all minimal locally �nite varieties which are not

of type 1 . We are going to analyze the commutator properties of algebras in TSSS varieties.

We give a short argument which establishes that a TSSS variety generated by an abelian

algebra is congruence permutable. This is a quick proof of the fact that a minimal variety of

type 2 is a�ne. We further show that a TSSS variety generated by a left nilpotent algebra

is congruence permutable.

LEMMA 6.1 Let V be a locally �nite variety. The following conditions are equivalent.

(i) V is a TSSS variety.

(ii) V contains no �nite simple algebra of type 1 .
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(iii) Whenever A 2 V is �nite, � � � in Con(A) and typ(�; �) = 1 , then :C(1; �;�).

Proof. We shall prove that :(i) =) :(ii) =) :(iii) =) :(i). If V is not a TSSS

variety, then it has a nontrivial locally strongly solvable subvariety which contains a �nite

simple algebra of type 1 . Hence, :(i) =) :(ii). Next, if V contains a �nite simple algebra

S of type 1 , then by choosing A = S and setting � = 0 and � = 1 we get that C(1; �;�)

since S is abelian. Hence, :(ii) =) :(iii). To �nish we need to show that if V contains a

�nite algebra A with congruences � � � in Con(A) such that typ(�; �) = 1 and C(1; �;�),

then V contains a nontrivial strongly solvable algebra. Without loss of generality we may

assume that � = 0.

Let � be the congruence � � � restricted to the subalgebra A(�) of A�A (as in De�n-

ition 2.2). Clearly, � is strongly Abelian, so we have �

ss

� 0. It is easy to check that

� _�

1;�

= 1. Hence

1 = � _�

1;�

ss

� 0 _�

1;�

= �

1;�

:

Therefore, B = A(�)=�

1;�

is a strongly solvable member of V. To �nish our proof that V

is not a TSSS variety, we will show that B is not a 1{element algebra. (This will show that

V contains a nontrivial strongly solvable member.) To see this, note that our hypothesis

C(1; �; 0) is equivalent to [1; �] = 0 which in turn is equivalent to the condition that the

diagonal of A(�) is a union of �

1;�

{classes. But not every element of A(�) is on the diagonal

since � > 0. It follows that �

1;�

has at least one class contained in the diagonal of A(�) and

at least one class disjoint from the diagonal of A(�). Hence, B = A(�)=�

1;�

has at least 2

elements.

THEOREM 6.2 If V is a TSSS variety generated by an abelian algebra, then V is a�ne.

Proof. Since V is generated by an abelian algebra then we know from [6] that V

is locally solvable, or equivalently, that typfVg � f1 ;2 g. Corollary 2.7 tells us that in

fact every �nite member of V is left nilpotent. Now, if 1 2 typfVg, then V contains a

�nite subdirectly irreducible algebra A with monolith � where typ(0; �) = 1 . As A is left

nilpotent, [1; �] = 0, that is, C(1; �; 0). But now the equivalence (i) () (iii) of Lemma

6.1 proves that V is not TSSS. Hence 1 62 typfVg. The conclusion is that typfVg = f2 g

and therefore that V is congruence permutable by Theorem 7.11 (3) of [6]. Any congruence

permutable variety generated by an abelian algebra is a�ne and so the theorem is proved.

COROLLARY 6.3 Every minimal variety of type 2 is a�ne.

The following lemma generalizes the result, found in [7], that every homomorphic image

of a �nite abelian algebra is left nilpotent. (To see that it generalizes the result in [7], take

� = 1 and � = 0.)
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LEMMA 6.4 If A is a �nite algebra with congruences �; �, then

[�;�] � � =) C(� _ �; �; �)

whenever � � � � � � � _ �.

Proof. If the statement of the lemma is false for A, then it is false for A=[�;�], so we

need only to prove the lemma in the case where [�;�] = 0. Assume throughout the proof

that [�;�] = 0 and � � � � � � � _ �. We will argue that C(� _ �; �; �).

Since � � � � � _ �, we get � _ � = � _ �. Hence, we need to show that C(� _ �; �; �).

But

C(� _ �; �; �)() C(�; �; �) & C(�; �; �):

Since C(�; �; �) holds for any two congruences � and �, we can establish the lemma by showing

that C(�; �; �). We will use the fact that h�; �i is �{regular which follows from Theorem 2.6

(1). Theorem 2.6 (4) applies since [�;�] = 0 � � and h�; �i is �{regular. This guarantees

that the conditions C(�; �; �), C(�;�; �), [�; �] � � and [�; �] � � are equivalent, so it su�ces

to establish any one of these conditions.

Case 1. � ^ � � �.

In this case, [�; �] � � ^ � � �, so C(�; �; �) and we are done.

Case 2. � ^ � 6� �.

Let � = � ^ � and choose � such that � � � � � ^ �. The prime quotients h�; �i and

h�; �i are perspective prime quotients which are both �{regular (since [�;�] = 0). Now,

[�; �] � [�;�] = 0 � �;

so C(�; �;�) by Theorem 2.6 (4). But � = � ^ �, so C(�; �;�) implies C(�; �; �). Together

with C(�; �; �) we get C(� _ �; �; �). But � _ � = �, so we have C(�; �; �). By Theorem 2.6

(4), we have C(�; �; �). This �nishes the proof of Case 2 and therefore it �nishes the proof

of the lemma.

LEMMA 6.5 Assume that A is a �nite algebra and thatCon(A) has congruences �; � such

that [�;�] � � and � _ � = 1. Then for the conditions listed below, (i) =) (ii) =) (iii).

(i) V(A) is a TSSS variety.

(ii) typf�; 1g = f2 g.

(iii) C(1; 1;�) holds.

Proof. The implication (ii) =) (iii) clearly follows from Corollary 2.13. So assume

that (i) holds. From the previous lemma we know that C(1; �; �) whenever � � � � � � 1.

This tells us two things. First, the interval I[�; 1] is solvable, so typf�; 1g � f1 ;2 g. Second,

referring to Lemma 6.1 (i) () (iii), we �nd that 1 62 typf�; 1g since we are in a TSSS

variety. Hence, typf�; 1g = f2 g and (ii) holds.
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LEMMA 6.6 Assume that A belongs to a TSSS variety and A has a congruence � such

that [1; �] = 0. Then B = A(�)=�

1;�

generates an a�ne variety. If � > 0, then B is

nontrivial.

Proof. Since C(1; �; 0) in Con(A) we get C(1; �; �

i

), i = 1; 2, in Con(A(�)) and

therefore C(1; �; 0) as well. Thus, [1; �] = 0 and so [�;�] = 0 � �

1;�

. We also have

� _�

1;�

= 1. Lemma 6.5 proves that C(1; 1;�

1;�

) holds, so, by Theorem 6.2, B generates

an a�ne variety.

If � > 0, then the universe of A(�) properly contains the diagonal, but the diagonal is a

union of �

1;�

{classes. Hence, there are at least two distinct �

1;�

{classes. It follows that B

contains at least two elements.

LEMMA 6.7 Assume that A is an algebra with a congruence � such that [1; �] = 0. If

d(x; y; z) is a term which interprets as a Mal'cev operation on A=� and on A(�)=�

1;�

, then

a term M(x; y; z) which interprets as a Mal'cev operation on A may be constructed by

composition from d(x; y; z).

Proof. Write � for �

1;�

. The statement that d(x; y; z) interprets as a Mal'cev oper-

ation on each of A=� and A(�)=� is equivalent to the statement that for all u; v 2 A and

(a; b); (c; e); (f; g) 2 � we have that

d

A

(u; u; v) � v � d

A

(v; u; u)

and that

 

a

b

!

�

 

c

e

!

implies

d

A(�)

  

a

b

! 

c

e

! 

f

g

!!

�

 

f

g

!

� d

A(�)

  

f

g

! 

c

e

! 

a

b

!!

:

Claim 1. For any a 2 A the polynomials d

A

(x; a; a); d

A

(a; a; x) and d

A

(x; x; x) are one{

to{one functions. Furthermore, if (a; b) 2 �, then d

A

(x; a; a) = d

A

(x; b; b) and d

A

(a; a; x) =

d

A

(b; b; x).

Proof of Claim 1. Assume that for u; v 2 A we have that d

A

(u; a; a) = w = d

A

(v; a; a).

Since d

A

(x; a; a) � x, then

u � d

A

(u; a; a) = d

A

(v; a; a) � v

hence (u; v) 2 �. But now, (u; v); (a; a) 2 � and

 

a

a

!

�

 

a

a

!

: Hence, from above we

see that

 

w

w

!

= d

A(�)

  

u

v

! 

a

a

! 

a

a

!!

�

 

u

v

!

:

Since the diagonal of A(�) is a union of �{classes then we conclude that u = v and hence

that d

A

(x; a; a) is one{to{one. A similar proof works for d

A

(a; a; x).
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Now, assume that (a; b) 2 � and that r 2 A. Since

 

a

b

!

�

 

a

b

!

, then

 

r

r

!

� d

A(�)

  

r

r

! 

a

b

! 

a

b

!!

=

 

d

A

(r; a; a)

d

A

(r; b; b)

!

:

Again using the fact that the diagonal ofA(�) is a union of �{classes we see that d

A

(r; a; a) =

d

A

(r; b; b). A similar proof shows that d

A

(a; a; x) = d

A

(b; b; x) for all x 2 A.

Finally we must show that d

A

(x; x; x) is one{to{one. Assume that d

A

(u; u; u) = w =

d

A

(v; v; v) for some u; v 2 A. Since d is Mal'cev on A=� we get that d

A

(x; x; x) � x, so we

must have (u;w); (w; v) 2 �. From what we have already proved, d

A

(x; u; u) = d

A

(x; v; v),

so d

A

(u; v; v) = d

A

(u; u; u) = w. Since d

A

(x; v; v) is one{to{one and d

A

(u; v; v) = w =

d

A

(v; v; v) we get u = v. Claim 1 is proved.

Claim 2. For �

i

equal to the i{th projection kernel of A(�) we have �

i

^� = 0

A

.

Proof of Claim 2. We prove the claim for �

1

only. Assume that

 

a

b

!

�

1

^�

 

a

c

!

.

Necessarily we have (a; b); (a; c) 2 �. Using Claim 1 we get the �rst equality in

 

d

A

(c; c; c)

d

A

(b; b; b)

!

=

 

d

A

(a; a; c)

d

A

(b; c; c)

!

= d

A(�)

  

a

b

! 

a

c

! 

c

c

!!

�

 

c

c

!

:

Hence d

A

(b; b; b) = d

A

(c; c; c). By Claim 1 we have that b = c. This completes the argument

for Claim 2.

We de�ne a �rst approximation to a Mal'cev term on A:

p(x; y; z) = d(d(z; z; x); d(d(x; x; z); z; y); z):

Claim 3. The algebras A=� and A(�)=� satisfy the equation d(x; y; z) = p(x; y; z). Fur-

thermore, A satis�es the equation p(x; x; z) = z.

Proof of Claim 3. The fact that A=� and A(�)=� satisfy the equation d(x; y; z) =

p(x; y; z) follows from the de�nition of p and the fact that d interprets as a Mal'cev operation

on these algebras.

We must show that A satis�es the equation p(x; x; z) = z which may be written as

d(d(z; z; x); d(d(x; x; z); z; x); z) = z. To show that this holds, choose a; b 2 A arbitrarily. We

will show that d

A

(d

A

(b; b; a); d

A

(d

A

(a; a; b); b; a); b) = b. Set u = d

A

(d

A

(a; a; b); b; a). Since

d

A

(a; a; b) � b, we get that u � d

A

(b; b; a) � a. Hence the pairs

 

d

A

(b; b; a)

u

!

,

 

u

u

!

and

 

b

b

!

belong to A(�) and the latter two are �{related. This means that

 

d

A

(d

A

(b; b; a); u; b)

d

A

(u; u; b)

!

= d

A(�)

  

d

A

(b; b; a)

u

! 

u

u

! 

b

b

!!

�

 

d

A

(b; b; a)

u

!

:

We can modify the left side of this displayed line by noticing that d

A

(d

A

(b; b; a); u; b) =

p

A

(a; a; b) and that (since u � a) d

A

(u; u; b) = d

A

(a; a; b). Hence the left side equals
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p

A

(a; a; b)

d

A

(a; a; b)

!

. We can modify the right side by replacing u with d

A

(d

A

(a; a; b); b; a). Start-

ing with this and continuing yields:

 

d

A

(b; b; a)

d

A

(d

A

(a; a; b); b; a)

!

= d

A(�)

  

b

d

A

(a; a; b)

! 

b

b

! 

a

a

!!

�

 

b

d

A

(a; a; b)

!

:

Putting the left and right modi�cations together we get that

 

p

A

(a; a; b)

d

A

(a; a; b)

!

�

2

^�

 

b

d

A

(a; a; b)

!

:

From Claim 2 we deduce that p

A

(a; a; b) = b as desired. This completes the proof of Claim 3.

Our Mal'cev operation M must be constructed from p in a di�erent way than p was

constructed from d. The de�nition of M is

M(x; y; z) = p(p(x; p(x; z; z); x); p(y; p(y; z; z); y); z):

Claim 4. The algebras A=� and A(�)=� satisfy the equation p(x; y; z) = M(x; y; z). Fur-

thermore,M

A

(x; y; z) is a Mal'cev operation.

Proof of Claim 4. The �rst part of Claim 4 is handled just like the �rst part of Claim 3.

From the de�nition ofM and the fact thatA j= p(x; x; z) = z we get thatA j=M(x; x; z) = z.

We must prove that for any a; b 2 A we have

a =M

A

(a; b; b)

= p

A

(p

A

(a; p

A

(a; b; b); a); p

A

(b; p

A

(b; b; b); b); b)

= p

A

(p

A

(a; p

A

(a; b; b); a); b; b):

In the upcoming calculations, when moving from the �rst line to the second, we will use the

fact that p

A

(a; p

A

(a; b; b); p

A

(a; b; b)) = p

A

(a; a; a) = a, which follows from p

A

(a; b; b) � a

and Claim 1.

p

A(�)

  

p

A

(a; p

A

(a; b; b); a)

a

! 

b

b

! 

b

b

!!

�

 

p

A

(a; p

A

(a; b; b); a)

a

!

= p

A(�)

  

a

a

! 

p

A

(a; b; b)

p

A

(a; b; b)

! 

a

p

A

(a; b; b)

!!

�

 

a

p

A

(a; b; b)

!

:

Replacing the �rst expression in the above sequence with an equal value yields:

 

M

A

(a; b; b)

p

A

(a; b; b)

!

�

2

^�

 

a

p

A

(a; b; b)

!

:

FromClaim 2 we deduce thatM

A

(a; b; b) = a. This �nishes the proof of Claim 4 and therefore

of the theorem.

There is a simpler proof of the previous lemma if one assumes that A is �nite. After

proving Claim 1 one knows that for all a 2 A the polynomials d

A

(x; a; a) and d

A

(a; a; x) are

one{to{one. When A is �nite this implies that these polynomials are permutations. From

this one can construct a Mal'cev term from d by iteration. Unlike the argument given above,

in this argument the complexity of the termM constructed depends on jAj.
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THEOREM 6.8 If V is a TSSS variety generated by a left nilpotent algebra, then V is

congruence permutable.

Proof. We may assume that V is generated by a �nite, left nilpotent algebra. For

if V is a TSSS variety generated by a left nilpotent algebra, then F

V

(2) is a �nite, left

nilpotent algebra. If the theorem holds for �nitely generated varieties, then V

0

= V(F

V

(2))

is congruence permutable. But V

0

= V(F

V

(2)) is congruence permutable i� V is congruence

permutable. (The reason for this is that any Mal'cev term for V

0

is also a Mal'cev term for V

since the de�ning equations for a Mal'cev term involve only two variables.) Thus, we only

need to prove the theorem in the case when V is generated by a �nite, left nilpotent algebra.

Let A denote the class of �nite, left nilpotent algebras that generate TSSS varieties. We

will use induction on the nilpotence class to prove that for any A 2 A the variety V(A) is

congruence permutable. As we explained in the last paragraph, this will �nish the proof.

If A 2 A is abelian, then Theorem 6.2 proves that V(A) is a�ne and therefore congruence

permutable. The base case for our inductive proof has been established. For the inductive

step of our argument, choose A 2 A of nilpotence class k > 1 and assume that the theorem

is true for all A

0

2 A of smaller nilpotence class. Since A is of nilpotence class k, we

have (1]

k+1

= 0 < (1]

k

. Let � = (1]

k

; Note that A=� has nilpotence class k � 1. Let

� = �

1;�

2 Con(A(�)). We have [1; �] = 0, so by Lemma 6.6 we have that A(�)=� is a�ne.

Let � = � ^� in Con(A(�)). Notice that A(�)=�

�

=

A=� is of nilpotence class k � 1 and

A(�)=� is abelian since it is a�ne. B = A(�)=� is of nilpotence class � k � 1 since it is a

subdirect product of algebras of nilpotence class � k� 1. Since B 2 V(A) we get that V(B)

is TSSS. This means that B 2 A and, from our inductive hypothesis, V(B) is congruence

permutable. Let d(x; y; z) be a term which interprets as a Mal'cev operation on B. Then

d(x; y; z) interprets as a Mal'cev operation on both A(�)=�

�

=

A=� and on A(�)=�. Hence,

by Lemma 6.7, there is a term M(x; y; z) constructible from d(x; y; z) which interprets as a

Mal'cev operation on A. This proves that V(A) is congruence permutable and the argument

for the inductive step is complete.

COROLLARY 6.9 If V is a TSSS variety, then V has a congruence permutable subvariety

containing all left nilpotent members of V.

Proof. We need to prove that if V is a TSSS variety, then there is a term which

interprets as a Mal'cev operation on every left nilpotent algebra in V. For then the equations

which state that this term is a Mal'cev operation de�ne a congruence permutable subvariety

of V containing all the left nilpotent members of V.

Let ft

1

(x; y; z); : : : ; t

n

(x; y; z)g be a set of representatives of the V{inequivalent ternary

terms. If, for each i, there is a left nilpotent A

i

2 V such that t

i

does not interpret as a

Mal'cev operation on A

i

, then no ternary term interprets as a Mal'cev operation on the left

nilpotent algebra �

i�n

A

i

. We proved this to be impossible in Theorem 6.8. The conclusion

is that some t

i

interprets as a Mal'cev operation on every left nilpotent member of V.

We pointed out in Section 5 that an abelian algebra with a Mal'cev polynomial has a

Mal'cev term. This can be taken as the basis step in a proof by induction, modeled on the

proof of Theorem 6.8, of the following.
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THEOREM 6.10 Any nilpotent algebra with a Mal'cev polynomial has a Mal'cev term.

The previous statement is false when the word \nilpotent" is weakened to \solvable".

Example. To see that the nilpotence hypothesis in Theorem 6.8 cannot be weakened to

solvability, we exhibit a TSSS variety which is generated by a �nite solvable algebra but is

not congruence permutable.

Let V be the variety with one binary operation, denoted by juxtaposition, and one nullary

operation, 1, which is de�ned by the equations V j= 1x = x1 = x. If A 2 V and a 2 A�f1g,

then ha; 1i is a 1{snag of A. Hence there does not exist a nontrivial, �nite, strongly solvable

algebra in V. It follows that every locally �nite subvariety of V is a TSSS variety. So let A

be the member of V presented by

ha; b

�

�

� a

2

= b

2

= ab = ba = 1i:

A = f1; a; bg and ConA is a 3{element chain with � = Cg(a; b) the unique nontrivial, proper

congruence. It is easy to see that typ(0; �) = 1 and typ(�; 1) = 2 , so A is solvable and

V(A) is a TSSS variety, but V(A) is not congruence permutable.

In this section we have focused on left nilpotent algebras in TSSS varieties. The results

extend to other types of nilpotent algebras in TSSS varieties since [7] proves that the hypo-

thesis of left nilpotence is weaker than any other notion of nilpotence. E. g., if A is a �nite

algebra satisfying [1; 1)

k+1

= 0 (A is k{step right nilpotent), then A is left nilpotent although

possibly of higher nilpotence class. Similarly, if a mixed expression like [1; [[1; [1; 1]]; 1]] = 0

holds, then A is left nilpotent. We know very little about which non{nilpotent algebras

generate TSSS varieties except that some of the arguments in this section may be localized.

We conclude this section with a peculiar application of Theorem 6.8.

COROLLARY 6.11 Let V be an idempotent variety generated by nilpotent algebras. If

F

V

(2) has odd cardinality, then V is congruence permutable.

Proof. As we pointed out in the proof of Theorem 6.8, to show that V is congruence

permutable it su�ces to prove that the subvariety V

0

= V(F

V

(2)) is congruence permutable.

We shall prove this with the aid of Theorem 6.8. If F

V

(2) has odd cardinality, then V

0

is

generated by the �nite, left nilpotent algebra F

V

(2). We need only to prove that the locally

strongly solvable subvariety of V

0

is trivial to complete the argument.

Let � be the automorphism of F

V

(2) determined by switching the generators. This

automorphism has order two and, since jF

V

(2)j is odd, this implies that there is an ele-

ment w 2 F

V

(2) such that �(w) = w. If w(x; y) is any binary term representing w, then

w(x; y) = w(y; x) is an equation of V

0

.

If V

0

has a nontrivial locally strongly solvable subvariety, then it has a strongly abelian,

minimal subvariety, M. The strictly simple generator of M is term equivalent to a matrix

power of a 2{element set or a 2{element pointed set as we have proved. But since we are

working with idempotent algebras, M must in fact be equivalent to the variety of sets. The

term w(x; y) must interpret as a projection in M; either w(x; y) = x or w(x; y) = y is an
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equation of M. But now we have a contradiction: M satis�es w(x; y) = w(y; x) and either

w(x; y) = x or w(x; y) = y, but it does not satisfy x = y. This is clearly impossible. The

conclusion is that V

0

is TSSS and so is congruence permutable. It follows that V is congruence

permutable as well.

We called this corollary `peculiar' because the odd cardinality hypothesis results in such

a strong conclusion. If, for example, we start with a �nite nilpotent group G and take the

reduct hG;x

r

y

1�r

i for some r, then we get a nilpotent algebra which generates an idempotent

variety. The cardinality jF

V

(2)j can turn out to be either odd or even. Often, but only when

jF

V

(2)j is even, this type of variety is not congruence permutable.
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